前往小程序,Get更优阅读体验!
立即前往
发布
社区首页 >专栏 >【keras】一维卷积神经网络做回归「建议收藏」

【keras】一维卷积神经网络做回归「建议收藏」

作者头像
全栈程序员站长
发布2022-11-09 11:24:25
发布2022-11-09 11:24:25
2.3K00
代码可运行
举报
文章被收录于专栏:全栈程序员必看
运行总次数:0
代码可运行

大家好,又见面了,我是你们的朋友全栈君。

在上一篇博客里我介绍了如何利用keras对一个给定的数据集来完成多分类任务。

100%的分类准确度验证了分类模型的可行性和数据集的准确度。

【keras】一维卷积神经网络多分类

在这篇博客当中我将利用一个稍加修改的数据集来完成回归任务。

数据集大小仍然是247*900,不同的是数据集的第247位变成了湿度特征的真实湿度值。

用来表示湿度的样本是我们自己配置的,所以真实的湿度都是有理可循的,不是为了突出不同类别而捏造的。

数据集-用做回归.csv

或者百度网盘:

链接:https://pan.baidu.com/s/1R0Ok5lB_RaI2cVHychZuxQ 提取码:9nwi 复制这段内容后打开百度网盘手机App,操作更方便哦

不同于分类算法得到的决策面,回归算法得到的是一个最优拟合线,这个线条可以最好的接近数据集中得各个点。

首先依旧是数据集的导入和划分:

代码语言:javascript
代码运行次数:0
复制
# 载入数据
df = pd.read_csv(r"C:\Users6CJW\Desktop\毕设代码\室内_10_50_9.csv")
X = np.expand_dims(df.values[:, 0:246].astype(float), axis=2)#增加一维轴
Y = df.values[:, 246]

# 划分训练集,测试集
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.5, random_state=0)

这里我便不做细说了,想要了解的同学可以看一下上一篇博客。

接着是网络模型的搭建:

代码语言:javascript
代码运行次数:0
复制
# 定义一个神经网络
model = Sequential()
model.add(Conv1D(16, 3,input_shape=(246,1), activation='relu'))
model.add(Conv1D(16, 3, activation='relu'))
model.add(MaxPooling1D(3))
model.add(Conv1D(64, 3, activation='relu'))
model.add(Conv1D(64, 3, activation='relu'))
model.add(MaxPooling1D(3))
model.add(Conv1D(128, 3, activation='relu'))
model.add(Conv1D(128, 3, activation='relu'))
model.add(MaxPooling1D(3))
model.add(Conv1D(64, 3, activation='relu'))
model.add(Conv1D(64, 3, activation='relu'))
model.add(MaxPooling1D(3))
model.add(Flatten())
model.add(Dense(1, activation='linear'))
plot_model(model, to_file='./model_linear.png', show_shapes=True)
print(model.summary())
model.compile(optimizer='adam', loss='mean_squared_error', metrics=[coeff_determination])

为了完成回归任务,神经网络的输出层需要被设置为一个结点,它表示输出每一条湿度信息的预测结果。

代码语言:javascript
代码运行次数:0
复制
model.add(Dense(1, activation='linear'))

我们使用均方误差(Mean Squared Error,MSE)做输出层的损失函数,MSE经常被用做来比较模型预测值与真实值的偏差,在我们的任务中,通过不断减小损失函数的值,进而让整个网络尽可能地去拟合它真实的湿度值。

整个网络模型的示意图如下:

经过多次调参之后,我们选用8层Conv1D来提取特征,每两层Conv1D后添加一层MaxPooling1D来保留主要特征,减少计算量。每层卷积层使用线性整流函数(Rectified Linear Unit, ReLU)作为激活函数。最后一层深度层输出湿度预测值,在MSE损失函数的逼近下,湿度的预测值会愈来愈趋向于真实值。

为了可以更准确的回归数据的真实湿度值,使用的网络层数明显比分类时要更深。

为了评估网络模型训练和测试过程的准确度,我们需要自定义度量函数:

决定系数R2(coefficient ofdetermination)常常在线性回归中被用来表征有多少百分比的因变量波动被回归线描述。如果R2 =1则表示模型完美地预测了目标变量。 表达式:R2=SSR/SST=1-SSE/SST 其中:SST=SSR+SSE,SST(total sum of squares)为总平方和,SSR(regression sum of squares)为回归平方和,SSE(error sum of squares) 为残差平方和。

代码语言:javascript
代码运行次数:0
复制
# 自定义度量函数
def coeff_determination(y_true, y_pred):
    SS_res =  K.sum(K.square( y_true-y_pred ))
    SS_tot = K.sum(K.square( y_true - K.mean(y_true) ) )
    return ( 1 - SS_res/(SS_tot + K.epsilon()) )

并把它运用到编译中来:

代码语言:javascript
代码运行次数:0
复制
model.compile(optimizer='adam', loss='mean_squared_error', metrics=[coeff_determination])

下面贴出整个运行过程的完整代码:

代码语言:javascript
代码运行次数:0
复制
# -*- coding: utf8 -*-
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.utils import np_utils,plot_model
from sklearn.model_selection import cross_val_score,train_test_split
from keras.layers import Dense, Dropout,Flatten,Conv1D,MaxPooling1D
from keras.models import model_from_json
import matplotlib.pyplot as plt
from keras import backend as K
# 载入数据
df = pd.read_csv(r"C:\Users\Desktop\数据集-用做回归.csv")
X = np.expand_dims(df.values[:, 0:246].astype(float), axis=2)#增加一维轴
Y = df.values[:, 246]
# 划分训练集,测试集
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.5, random_state=0)
# 自定义度量函数
def coeff_determination(y_true, y_pred):
SS_res =  K.sum(K.square( y_true-y_pred ))
SS_tot = K.sum(K.square( y_true - K.mean(y_true) ) )
return ( 1 - SS_res/(SS_tot + K.epsilon()) )
# 定义一个神经网络
model = Sequential()
model.add(Conv1D(16, 3,input_shape=(246,1), activation='relu'))
model.add(Conv1D(16, 3, activation='relu'))
model.add(MaxPooling1D(3))
model.add(Conv1D(64, 3, activation='relu'))
model.add(Conv1D(64, 3, activation='relu'))
model.add(MaxPooling1D(3))
model.add(Conv1D(128, 3, activation='relu'))
model.add(Conv1D(128, 3, activation='relu'))
model.add(MaxPooling1D(3))
model.add(Conv1D(64, 3, activation='relu'))
model.add(Conv1D(64, 3, activation='relu'))
model.add(MaxPooling1D(3))
model.add(Flatten())
model.add(Dense(1, activation='linear'))
plot_model(model, to_file='./model_linear.png', show_shapes=True)
print(model.summary())
model.compile(optimizer='adam', loss='mean_squared_error', metrics=[coeff_determination])
# 训练模型
model.fit(X_train,Y_train, validation_data=(X_test, Y_test),epochs=40, batch_size=10)
# # 将其模型转换为json
# model_json = model.to_json()
# with open(r"C:\Users\Desktop\model.json",'w')as json_file:
#     json_file.write(model_json)# 权重不在json中,只保存网络结构
# model.save_weights('model.h5')
#
# # 加载模型用做预测
# json_file = open(r"C:\Users\Desktop\model.json", "r")
# loaded_model_json = json_file.read()
# json_file.close()
# loaded_model = model_from_json(loaded_model_json)
# loaded_model.load_weights("model.h5")
# print("loaded model from disk")
# scores = model.evaluate(X_test,Y_test,verbose=0)
# print('%s: %.2f%%' % (model.metrics_names[1], scores[1]*100))
# 准确率
scores = model.evaluate(X_test,Y_test,verbose=0)
print('%s: %.2f%%' % (model.metrics_names[1], scores[1]*100))
# 预测值散点图
predicted = model.predict(X_test)
plt.scatter(Y_test,predicted)
x=np.linspace(0,0.3,100)
y=x
plt.plot(x,y,color='red',linewidth=1.0,linestyle='--',label='line')
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.legend(["y = x","湿度预测值"])
plt.title("预测值与真实值的偏离程度")
plt.xlabel('真实湿度值')
plt.ylabel('湿度预测值')
plt.savefig('test_xx.png', dpi=200, bbox_inches='tight', transparent=False)
plt.show()
# 计算误差
result =abs(np.mean(predicted - Y_test))
print("The mean error of linear regression:")
print(result)

在评估实验结果时,我是输出了决定系数的值以及回归湿度和真实湿度的平均偏差:

可以看出99%的点找到了他们应该去的归宿,即被回归线所扫瞄到。

平均误差在0.0014,可以说是一个很好的结果。

另一方面,我以真实湿度为x轴,预测湿度为y轴绘制了预测数据的散点图。

从图中可以看出预测数据较好的逼近了真实湿度值。

其实神经网络这套方法都比较相似,机器的计算代替了很多人为的推理和演算。

希望可以和大家多多交流,共同进步(●’◡’●)!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/190533.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年9月22日 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档