视频地址:http://mpvideo.qpic.cn/0bc33iaakaaag4amkcjtmzrvbwwdaxnaabia.f10002.mp4?
参考文章:
代码:
rm(list = ls())
options(stringsAsFactors = F)
load(file = 'Step1-op-dat.Rdata')
# 每次都要检测数据
dat[1:4,1:4]
obs_gsm <- metdata$geo_accession[metdata$source_name_ch1 == "Primary breast tumor_BMI 30+"]
nor_gsm <- metdata$geo_accession[metdata$source_name_ch1 == "Primary breast tumor_BMI <25"]
group_list_1 <- c(rep("Obesity",length(obs_gsm)),
rep("Normal",length(nor_gsm)))
dat1 <- dat[,c(obs_gsm,nor_gsm)]
library(limma)
design=model.matrix(~factor(group_list_1))
fit=lmFit(dat1,design)
fit=eBayes(fit)
## 上面是limma包用法的一种方式
options(digits = 4) #设置全局的数字有效位数为4
#topTable(fit,coef=2,adjust='BH')
deg = topTable(fit,coef=2,adjust='BH', n=Inf)
## 但是上面的用法做不到随心所欲的指定任意两组进行比较
design <- model.matrix(~0+factor(group_list_1))
colnames(design)=levels(factor(group_list_1))
head(design)
exprSet=dat1
rownames(design)=colnames(exprSet)
head(design)
contrast.matrix<-makeContrasts("Obesity-Normal",
levels = design)
contrast.matrix ##这个矩阵声明,我们要把 Tumor 组跟 Normal 进行差异分析比较
deg = function(exprSet,design,contrast.matrix){
##step1
fit <- lmFit(exprSet,design)
##step2
fit2 <- contrasts.fit(fit, contrast.matrix)
##这一步很重要,大家可以自行看看效果
fit2 <- eBayes(fit2) ## default no trend !!!
##eBayes() with trend=TRUE
##step3
tempOutput = topTable(fit2, coef=1, n=Inf)
nrDEG = na.omit(tempOutput)
#write.csv(nrDEG2,"limma_notrend.results.csv",quote = F)
head(nrDEG)
return(nrDEG)
}
deg = deg(exprSet,design,contrast.matrix)
head(deg)
save(deg,file = 'deg.Rdata')
load(file = 'deg.Rdata')
head(deg)
library(EnhancedVolcano)
EnhancedVolcano(deg,
lab = rownames(deg),
x = 'logFC',
y = 'P.Value')
ggsave(filename = 'EnhancedVolcano_for_DEG_DEseq2.pdf')
bp(dat[rownames(deg)[1],])
## for volcano
if(T){
nrDEG=deg
head(nrDEG)
attach(nrDEG)
plot(logFC,-log10(P.Value))
library(ggpubr)
df=nrDEG
df$v= -log10(P.Value) #df新增加一列'v',值为-log10(P.Value)
ggscatter(df, x = "logFC", y = "v",size=0.5)
df$g=ifelse(df$P.Value>0.01,'stable', #if 判断:如果这一基因的P.Value>0.01,则为stable基因
ifelse( df$logFC >1,'up', #接上句else 否则:接下来开始判断那些P.Value<0.01的基因,再if 判断:如果logFC >1.5,则为up(上调)基因
ifelse( df$logFC < -1,'down','stable') )#接上句else 否则:接下来开始判断那些logFC <1.5 的基因,再if 判断:如果logFC <1.5,则为down(下调)基因,否则为stable基因
)
table(df$g)
df$name=rownames(df)
head(df)
ggscatter(df, x = "logFC", y = "v",size=0.5,color = 'g')
ggscatter(df, x = "logFC", y = "v", color = "g",size = 0.5,
label = "name", repel = T,
#label.select = rownames(df)[df$g != 'stable'] ,
label.select = c('TTC9', 'AQP3', 'CXCL11','PTGS2'), #挑选一些基因在图中显示出来
palette = c("#00AFBB", "#E7B800", "#FC4E07") )
ggsave('volcano.png')
ggscatter(df, x = "AveExpr", y = "logFC",size = 0.2)
df$p_c = ifelse(df$P.Value<0.001,'p<0.01',
ifelse(df$P.Value<0.01,'0.01<p<0.01','p>0.01'))
table(df$p_c )
ggscatter(df,x = "AveExpr", y = "logFC", color = "p_c",size=0.2,
palette = c("green", "red", "black") )
ggsave('MA.png')
}
## for heatmap
if(T){
load(file = 'step1-output.Rdata')
# 每次都要检测数据
dat[1:4,1:4]
table(group_list)
x=deg$logFC #deg取logFC这列并将其重新赋值给x
names(x)=rownames(deg) #deg取probe_id这列,并将其作为名字给x
cg=c(names(head(sort(x),100)),#对x进行从小到大排列,取前100及后100,并取其对应的探针名,作为向量赋值给cg
names(tail(sort(x),100)))
library(pheatmap)
pheatmap(dat[cg,],show_colnames =F,show_rownames = F) #对dat按照cg取行,所得到的矩阵来画热图
n=t(scale(t(dat[cg,])))#通过“scale”对log-ratio数值进行归一化,现在的dat是行名为探针,列名为样本名,由于scale这个函数应用在不同组数据间存在差异时,需要行名为样本,因此需要用t(dat[cg,])来转换,最后再转换回来
n[n>2]=2
n[n< -2]= -2
n[1:4,1:4]
pheatmap(n,show_colnames =F,show_rownames = F)
ac=data.frame(group=group_list)
rownames(ac)=colnames(n) #将ac的行名也就分组信息(是‘no TNBC’还是‘TNBC’)给到n的列名,即热图中位于上方的分组信息
pheatmap(n,show_colnames =F,
show_rownames = F,
cluster_cols = T,
annotation_col=ac,filename = 'heatmap_top200_DEG.png') #列名注释信息为ac即分组信息
}
write.csv(deg,file = 'deg.csv')
本文分享自 MedBioInfoCloud 微信公众号,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文参与 腾讯云自媒体同步曝光计划 ,欢迎热爱写作的你一起参与!