前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >注意力FM模型AFM

注意力FM模型AFM

原创
作者头像
felixzhao
发布2023-01-16 17:31:34
6010
发布2023-01-16 17:31:34
举报
文章被收录于专栏:null的专栏null的专栏

1. 概述

在CTR预估任务中,对模型特征的探索是一个重要的分支方向,尤其是特征的交叉,从早起的线性模型Logistic Regression开始,研究者在其中加入了人工的交叉特征,对最终的预估效果起到了正向的效果,但是人工的方式毕竟需要大量的人力,能否自动挖掘出特征的交叉成了研究的重要方向,随着Factorization Machines[1]的提出,模型能够自动处理二阶的特征交叉,极大减轻了人工交叉的工作量。

但是在FM中,每一个交叉特征的权重是一致的,但是在实际的工作中,不同的交叉特征应该具备不同的权重,尤其是较少使用到的权重,对于统一的权重会影响到模型的最终效果。AFM(Attentional Factorization Machines)[2]模型在FM模型的基础上,引入了Attention机制,通过Attention的网络对FM模型中的交叉特征赋予不同的权重。

2. 算法原理

2.1. FM模型中的交叉特征

FM模型中包含了两个部分,一部分是线性部分,另一部分是二阶的交叉部分,其表达式如下所示:

\begin{matrix}\hat{y}_{FM}\left ( \mathbf{x} \right )= & \underbrace{w_0+\sum_{i=1}^{n}w_ix_i} & + & \underbrace{\sum_{i=1}^{n}\sum_{j=i+1}^{n}\hat{w}_{ij}x_ix_j} \\ & \textrm{linear\;regression} & & \textrm{pair-wise\;feature omteractions} \\\end{matrix}

其中,\hat{w}_{ij} 表示的是交叉特征x_ix_j 的权重,在FM算法中,为了方便计算,为每一个特征赋予了一个k 维的向量:\mathbf{v}_i\in \mathbb{R}^k ,则\hat{w}_{ij} 可以表示为:

\hat{w}_{ij}=\mathbf{v}_i^T\mathbf{v}_j

对于具体为甚么上述的这样的计算方式可以方便计算,可以参见参考[3]。既然上面说\hat{w}_{ij} 表示的是交叉特征x_ix_j 的权重,那么为什么还说在FM模型中的每个交叉特征的权重是一致的,这个怎么理解?如果将FM模型放入到神经网络的框架下,FM模型的结构可以由下图表示:

对于每一个特征都赋予一个$k$维的向量,如上图中的第二个特征x_2k 维向量为\mathbf{v}_2 ,同理,第四个特征x_4k 维向量为\mathbf{v}_4 ,这里类似于对原始特征的Embedding,最终x_2x_4 的交叉特征可以表示为:\left ( \mathbf{v}_2\odot \mathbf{v}_4 \right )x_2x_4 ,其中,\odot 表示的是元素的乘积。最终,将所有的交叉特征相加便得到了交叉部分y_2

y_2= \mathbf{p}^T\sum_{\left ( i,j \right )\in \mathfrak{R}_x}\left ( \mathbf{v}_i\odot \mathbf{v}_i \right )x_ix_j+b

其中,\mathfrak{R}_x=\left\{\left ( i,j \right ) \right\}_{i\in \chi ,j\in \chi,j>i}\mathbf{p}\in \mathbb{R}^kb\in \mathbb{R} ,在上述的FM中,\mathbf{p}=\mathbf{1}b=0 。在相加的过程中,对于每一部分的交叉特征的权重都是一致的,这就会导致上面说的统一的权重会影响到模型的最终效果。我们希望对于每一部分的交叉特征能够有不同的权重,即:

y_2=\mathbf{p}^T\sum_{\left ( i,j \right )\in \mathfrak{R}_x}a_{i,j}\left ( \mathbf{v}_i\odot \mathbf{v}_i \right )x_ix_j+b

其中,a_{i,j} 表示的是第ij 交叉特征部分的权重。

2.2. AFM的网络结构

在注意力FM模型AFM(Attentional Factorization Machines)中,是在FM的基础上引入了Attention机制,通过Attention网络学习到每个交叉特征的权重a_{i,j} ,AFM的网络结构如下图所示:

上述在Pair-wise Interaction Layer和Prediction Score之间的SUM Pooling上增加了Attention的网络,具体的数学表达式如下所示:

\hat{y}_{AFM}\left ( \mathbf{x} \right )=w_0+\sum_{i=1}^{n}w_ix_i+\mathbf{p}^T\sum_{i=1}^{n}\sum_{j=i+1}^{n}a_{ij}\left ( \mathbf{v}_i\odot \mathbf{v}_j \right )x_ix_j

2.3. Attention网络

对于Attention网络部分,需要计算出对于不同的交叉特征部分的权重a_{ij} ,其中,网络的输入为\left ( \mathbf{v}_i\odot \mathbf{v}_j \right )x_ix_ja_{ij} 的计算过程如下:

\begin{matrix}a^{'}_{ij}=\mathbf{h}^TReLU\left ( \mathbf{W}\left ( \mathbf{v}_i\odot \mathbf{v}_j \right )x_ix_j+\mathbf{b} \right ) \\a_{ij}=\frac{exp\left ( a^{'}_{ij} \right )}{\sum_{\left ( i,j \right )\in \mathfrak{R}_x}exp\left ( a^{'}_{ij} \right )}\end{matrix}

参考[4]中给出了具体的AFM的实现,下面是Attention网络的具体实现方法:

代码语言:python
复制
def call(self, inputs, training=None, **kwargs):
	if K.ndim(inputs[0]) != 3:
		raise ValueError(
			"Unexpected inputs dimensions %d, expect to be 3 dimensions" % (K.ndim(inputs)))

	embeds_vec_list = inputs # 交叉特征部分
	row = []
	col = []

	for r, c in itertools.combinations(embeds_vec_list, 2):
		row.append(r)
		col.append(c)

	p = tf.concat(row, axis=1)
	q = tf.concat(col, axis=1)
	inner_product = p * q

	bi_interaction = inner_product
	attention_temp = tf.nn.relu(tf.nn.bias_add(tf.tensordot(
		bi_interaction, self.attention_W, axes=(-1, 0)), self.attention_b)) # 计算网络输出,上述公式的第一部分
	#  Dense(self.attention_factor,'relu',kernel_regularizer=l2(self.l2_reg_w))(bi_interaction)
	self.normalized_att_score = softmax(tf.tensordot(
		attention_temp, self.projection_h, axes=(-1, 0)), dim=1) # 归一化,上述公式的第二部分
	attention_output = reduce_sum(
		self.normalized_att_score * bi_interaction, axis=1) # 加权求和

	attention_output = self.dropout(attention_output, training=training)  # training,防止过拟合

	afm_out = self.tensordot([attention_output, self.projection_p]) # 乘以向量,做最终的输出
	return afm_out

3. 总结

AFM模型在FM模型的基础上,引入了Attention机制,通过Attention的网络对FM模型中的交叉特征赋予不同的权重。

参考文献

[1] Rendle S. Factorization machines[C]//2010 IEEE International conference on data mining. IEEE, 2010: 995-1000.

[2] Xiao J, Ye H, He X, et al. Attentional factorization machines: Learning the weight of feature interactions via attention networks[J]. arXiv preprint arXiv:1708.04617, 2017.

[3] 简单易学的机器学习算法——因子分解机(Factorization Machine)

[4] DeepCTR

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 概述
  • 2. 算法原理
    • 2.1. FM模型中的交叉特征
      • 2.2. AFM的网络结构
        • 2.3. Attention网络
        • 3. 总结
        • 参考文献
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档