首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >R语言PCA可视化3D版

R语言PCA可视化3D版

作者头像
医学和生信笔记
发布2023-02-14 17:06:26
发布2023-02-14 17:06:26
69700
代码可运行
举报
运行总次数:0
代码可运行

之前详细介绍了R语言中的主成分分析,以及超级详细的主成分分析可视化方法,主要是基于factoextrafactoMineR两个神包。

  • R语言主成分分析
  • R语言主成分分析可视化(颜值高,很详细)

今天说一下如何提取数据用ggplot2画PCA图,以及三维PCA图。

提取数据

还是使用鸢尾花数据集。

代码语言:javascript
代码运行次数:0
运行
复制
rm(list = ls())

pca.res <- prcomp(iris[,-5], scale. = T, center = T)
pca.res
## Standard deviations (1, .., p=4):
## [1] 1.7083611 0.9560494 0.3830886 0.1439265
## 
## Rotation (n x k) = (4 x 4):
##                     PC1         PC2        PC3        PC4
## Sepal.Length  0.5210659 -0.37741762  0.7195664  0.2612863
## Sepal.Width  -0.2693474 -0.92329566 -0.2443818 -0.1235096
## Petal.Length  0.5804131 -0.02449161 -0.1421264 -0.8014492
## Petal.Width   0.5648565 -0.06694199 -0.6342727  0.5235971

在上一篇中提到过,经典的PCA图的横纵坐标其实就是不同样本在不同主成分中的得分,只要提取出来就可以用ggplot2画了。

代码语言:javascript
代码运行次数:0
运行
复制
# 提取得分
tmp <- as.data.frame(pca.res$x)
head(tmp)
##         PC1        PC2         PC3          PC4
## 1 -2.257141 -0.4784238  0.12727962  0.024087508
## 2 -2.074013  0.6718827  0.23382552  0.102662845
## 3 -2.356335  0.3407664 -0.04405390  0.028282305
## 4 -2.291707  0.5953999 -0.09098530 -0.065735340
## 5 -2.381863 -0.6446757 -0.01568565 -0.035802870
## 6 -2.068701 -1.4842053 -0.02687825  0.006586116

和原数据拼到一起就可以画图了:

代码语言:javascript
代码运行次数:0
运行
复制
tmp$species <- iris$Species
head(tmp)
##         PC1        PC2         PC3          PC4 species
## 1 -2.257141 -0.4784238  0.12727962  0.024087508  setosa
## 2 -2.074013  0.6718827  0.23382552  0.102662845  setosa
## 3 -2.356335  0.3407664 -0.04405390  0.028282305  setosa
## 4 -2.291707  0.5953999 -0.09098530 -0.065735340  setosa
## 5 -2.381863 -0.6446757 -0.01568565 -0.035802870  setosa
## 6 -2.068701 -1.4842053 -0.02687825  0.006586116  setosa
代码语言:javascript
代码运行次数:0
运行
复制
library(ggplot2)
library(ggsci)

ggplot(tmp, aes(PC1, PC2))+
  geom_point(aes(color = species))+
  stat_ellipse(aes(fill=species), alpha = 0.2,
               geom ="polygon",type = "norm")+
  scale_fill_aaas()+
  scale_color_aaas()+
  theme_bw()

3d版

其实就是使用3个主成分,之前介绍过一种3D版:使用R语言美化PCA图,使用方法非常简单,也是在文献中学习到的。

今天再介绍下scatterplot3d包。

代码语言:javascript
代码运行次数:0
运行
复制
library(scatterplot3d)

scatterplot3d(tmp[,1:3], # 第1-3主成分
              # 颜色长度要和样本长度一样,且对应!
              color = rep(c("#00AFBB", "#E7B800", "#FC4E07"),each=50),
              pch = 15,
              lty.hide = 2
              )
legend("topleft",c('Setosa','Versicolor','Virginica'),
fill=c("#00AFBB", "#E7B800", "#FC4E07"),box.col=NA)

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-11-17,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 医学和生信笔记 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 提取数据
  • 3d版
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档