前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >KMeans+降维,实现用户聚类!

KMeans+降维,实现用户聚类!

原创
作者头像
皮大大
发布2023-11-09 00:04:04
4370
发布2023-11-09 00:04:04
举报

公众号:尤而小屋 作者:Peter 编辑:Peter

大家好,我是Peter~

今天给大家介绍一个聚类和降维结合的项目,分为两块内容:

  • 直接使用原数据,经过数据预处理和编码后,基于原生的K-Means和PCA/T-SNE实现用户的聚类
  • 使用基于Transformer的预训练模型转换后的高维数据,再使用K-Means和PCA/T-SNE实现用户的聚类

本文先介绍第一种方案的完整过程。

1 项目导图

整个项目的导图:

2 导入库

In 1:

代码语言:python
复制
import pandas as pd 
import numpy as np 

np.random.seed(42)

import matplotlib.pyplot as plt
import matplotlib.cm as cm
import plotly.express as px
import plotly.graph_objects as go
import seaborn as sns
import shap

from sklearn.cluster import KMeans
from sklearn.preprocessing import PowerTransformer, OrdinalEncoder, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.manifold import TSNE
from sklearn.metrics import silhouette_score, silhouette_samples, accuracy_score, classification_report

from pyod.models.ecod import ECOD
from yellowbrick.cluster import KElbowVisualizer

import lightgbm as lgb
import prince

from tqdm.notebook import tqdm
from time import sleep

import warnings
warnings.filterwarnings("ignore")

3 读取数据

In 2:

代码语言:txt
复制
df = pd.read_csv("train/train.csv",sep=";")

数据的探索性分析过程,了解数据基本信息:

In 3:

代码语言:txt
复制
df.shape

Out3:

代码语言:txt
复制
(45211, 17)

In 4:

代码语言:txt
复制
df.columns

Out4:

代码语言:txt
复制
Index(['age', 'job', 'marital', 'education', 'default', 'balance', 'housing',
       'loan', 'contact', 'day', 'month', 'duration', 'campaign', 'pdays',
       'previous', 'poutcome', 'y'],
      dtype='object')

In 5:

代码语言:txt
复制
df.dtypes

Out5:

代码语言:txt
复制
age           int64
job          object
marital      object
education    object
default      object
balance       int64
housing      object
loan         object
contact      object
day           int64
month        object
duration      int64
campaign      int64
pdays         int64
previous      int64
poutcome     object
y            object
dtype: object

In 6:

代码语言:python
复制
pd.Series.value_counts(df.dtypes)

Out6:

代码语言:txt
复制
object    10
int64      7
Name: count, dtype: int64

In 7:

代码语言:txt
复制
# 缺失值信息

df.isnull().sum()

Out7:

代码语言:txt
复制
age          0
job          0
marital      0
education    0
default      0
balance      0
housing      0
loan         0
contact      0
day          0
month        0
duration     0
campaign     0
pdays        0
previous     0
poutcome     0
y            0
dtype: int64

结果表明数据中没有缺失值。

In 8:

代码语言:txt
复制
# 取出前面8个特征进行建模

df = df.iloc[:, 0:8]

4 数据预处理Preprocessing

主要是针对分类型的数据进行编码工作:

In 9:

代码语言:txt
复制
# 1-独热码
categorical_transformer_onehot = Pipeline(
    steps = [("encoder", OneHotEncoder(handle_unknown="ignore",drop="first", sparse=False))])

# 2-顺序编码
caterogorical_transformer_ordinal = Pipeline(
    steps=[("encoder", OrdinalEncoder())]
)

# 3-数据转换(对数变换、标准化、归一化等)
num = Pipeline(
    steps=[("encoder",PowerTransformer())]
)

In 10:

代码语言:txt
复制
df.dtypes

Out10:

代码语言:txt
复制
age           int64
job          object
marital      object
education    object
default      object
balance       int64
housing      object
loan         object
dtype: object

设定数据预处理器:

In 11:

代码语言:txt
复制
preprocessor = ColumnTransformer(transformers=[
    ("cat_onehot", categorical_transformer_onehot, ["default","housing","loan","job","marital"]),
    ("cat_ordinal", caterogorical_transformer_ordinal, ["education"]),
    ("num", num, ["age", "balance"])
])

5 创建pipeline

In 12:

代码语言:txt
复制
pipeline = Pipeline(
    steps=[("preprocessor", preprocessor)]
)

# 训练
pipe_fit = pipeline.fit(df)

In 13:

代码语言:txt
复制
data = pd.DataFrame(pipe_fit.transform(df), columns=pipe_fit.get_feature_names_out().tolist())
data.shape

Out13:

代码语言:txt
复制
(45211, 19)

In 14:

代码语言:txt
复制
data.columns

Out14:

代码语言:txt
复制
Index(['cat_onehot__default_yes', 'cat_onehot__housing_yes',
       'cat_onehot__loan_yes', 'cat_onehot__job_blue-collar',
       'cat_onehot__job_entrepreneur', 'cat_onehot__job_housemaid',
       'cat_onehot__job_management', 'cat_onehot__job_retired',
       'cat_onehot__job_self-employed', 'cat_onehot__job_services',
       'cat_onehot__job_student', 'cat_onehot__job_technician',
       'cat_onehot__job_unemployed', 'cat_onehot__job_unknown',
       'cat_onehot__marital_married', 'cat_onehot__marital_single',
       'cat_ordinal__education', 'num__age', 'num__balance'],
      dtype='object')

6 异常处理(ECOD)

基于Python Outlier Detection库进行异常值处理(Kmeans对异常值敏感)。

另外一种方法ECOD(empirical cumulative distribution functions for outlier detection)基于经验累积分布函数的异常值检测方法。

In 15:

代码语言:txt
复制
from pyod.models.ecod import ECOD

clf = ECOD()
clf.fit(data)

outliers = clf.predict(data)
outliers

Out15:

代码语言:txt
复制
array([0, 0, 0, ..., 1, 0, 0])

In 16:

代码语言:txt
复制
data["outliers"] = outliers  # 添加预测结果
df["outliers"] = outliers  # 原始数据添加预测结果

In 17:

代码语言:txt
复制
# 包含异常值和不含包单独处理

# data无异常值
data_no_outliers = data[data["outliers"] == 0]
data_no_outliers = data_no_outliers.drop(["outliers"],axis=1)

# data有异常值
data_with_outliers = data.copy()
data_with_outliers = data_with_outliers.drop(["outliers"],axis=1)

# 原始数据无异常值
df_no_outliers = df[df["outliers"] == 0]
df_no_outliers = df_no_outliers.drop(["outliers"], axis = 1)

In 18:

代码语言:txt
复制
data_no_outliers.head()

Out18:

查看数据量:

In 19:

代码语言:txt
复制
data_no_outliers.shape

Out19:

代码语言:txt
复制
(40690, 19)

In 20:

代码语言:txt
复制
data_with_outliers.shape

Out20:

代码语言:txt
复制
(45211, 19)

7 聚类建模(K-Means)

7.1 肘图识别k值

聚类过程中的k值如何确定?介绍基于肘图的方法,详细参考:

https://www.geeksforgeeks.org/elbow-method-for-optimal-value-of-k-in-kmeans/

In 21:

代码语言:txt
复制
from yellowbrick.cluster import KElbowVisualizer

km = KMeans(init="k-means++", random_state=0, n_init="auto")
visualizer = KElbowVisualizer(km, k=(2,10))
 
visualizer.fit(data_no_outliers)      
visualizer.show()  

Out21:

代码语言:txt
复制
<Axes: title={'center': 'Distortion Score Elbow for KMeans Clustering'}, xlabel='k', ylabel='distortion score'>

我们可以看到k=6的时候是最好的。

7.2 轮廓系数变化

In 22:

代码语言:txt
复制
from sklearn.metrics import davies_bouldin_score, silhouette_score, silhouette_samples
import matplotlib.cm as cm

def make_Silhouette_plot(X, n_clusters):
    plt.xlim([-0.1, 1])
    plt.ylim([0, len(X) + (n_clusters + 1) * 10])
    # 建立聚类模型
    clusterer = KMeans(n_clusters=n_clusters, 
                       max_iter=1000, 
                       n_init=10, 
                       init="k-means++",
                       random_state=10)
    
    # 聚类预测生成标签label
    cluster_label = clusterer.fit_predict(X)
    # 计算轮廓系数均值(整体数据样本)
    silhouette_avg = silhouette_score(X,cluster_label)
    print(f"n_clusterers: {n_clusters}, silhouette_score_avg:{silhouette_avg}")
    
    # 单个数据样本
    sample_silhouette_value = silhouette_samples(X, cluster_label)
    y_lower = 10
    
    for i in range(n_clusters):
        # 第i个簇群的轮廓系数
        i_cluster_silhouette_value = sample_silhouette_value[cluster_label == i]
        # 进行排序
        i_cluster_silhouette_value.sort()
        size_cluster_i = i_cluster_silhouette_value.shape[0]
        y_upper = y_lower + size_cluster_i
        # 颜色设置
        color = cm.nipy_spectral(float(i) / n_clusters)
        
        # 边界填充
        plt.fill_betweenx(
            np.arange(y_lower, y_upper),
            0,
            i_cluster_silhouette_value,
            facecolor=color,
            edgecolor=color,
            alpha=0.7
        )
        # 添加文本信息
        plt.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
        y_lower = y_upper + 10
        plt.title(f"The Silhouette Plot for n_cluster = {n_clusters}", fontsize=26)
        plt.xlabel("The silhouette coefficient values", fontsize=24)
        plt.ylabel("Cluter Label", fontsize=24)
        plt.axvline(x=silhouette_avg, color="red", linestyle="--")
        # x-y轴的刻度标签
        plt.xticks([-0.1,0,0.2,0.4,0.6,0.8,1])
        plt.yticks([])
               
range_n_clusters = list(range(2, 10))
    
for n in range_n_clusters:
    print(f"N cluster:{n}")
    make_Silhouette_plot(data_no_outliers, n)
    plt.savefig(f"Silhouette_Plot_{n}.png")
    plt.close()
代码语言:python
复制
N cluster:2
n_clusterers: 2, silhouette_score_avg:0.18112038570087005
......
N cluster:9
n_clusterers: 9, silhouette_score_avg:0.1465020645956104

不同k值下的轮廓系数对比:

7.3 实施聚类

从结果来说,k=6或者5效果都还OK,在这里我们最终选择k=5进行聚类分群:

In 23:

代码语言:txt
复制
km = KMeans(n_clusters=5,
            init="k-means++", 
            n_init=10,
            max_iter=100,
            random_state=42
           )

# 对无离群点数据的聚类
clusters_predict = km.fit_predict(data_no_outliers)

7.4 评价聚类效果

聚类效果如何评价?常用的三种评价指标:

  • Davies-Bouldin指数
  • Calinski-Harabasz Score
  • Silhouette Score

In 24:

代码语言:txt
复制
from sklearn.metrics import silhouette_score  # 轮廓系数
from sklearn.metrics import calinski_harabasz_score  
from sklearn.metrics import davies_bouldin_score  # 戴维森堡丁指数(DBI)
Davies-Bouldin指数

Davies-Bouldin指数是聚类算法的一种评估方法,其值越小则表示聚类结果越好。该指数的原理是通过比较不同聚类簇之间的距离和不同聚类簇内部距离来测量聚类的效果。其计算方法如下:

  • 对于每一个聚类簇,计算其中心点(centroid)。
  • 计算每个聚类簇内点与其中心点的距离,并求其平均值,得到聚类内部距离(intra-cluster distance)。
  • 计算不同聚类簇之间中心点的距离,并求其平均值,得到聚类间距离(inter-cluster distance)。
  • 对于每个聚类簇,计算其Davies-Bouldin指数:除该簇外所有其他簇中心点与该簇中心点距离的平均值与该簇内部距离的比值。
  • 对所有聚类簇的Davies-Bouldin指数求平均值,得到聚类总体的Davies-Bouldin指数。

通过Davies-Bouldin指数,我们可以比较不同聚类算法、不同参数下的聚类效果,从而选择最佳的聚类方案。Davies-Bouldin指数能够考虑到聚类结果的波动情况,对于相似的聚类结果,其Davies-Bouldin指数较大。因此,Davies-Bouldin指数能够区分不同聚类结果的相似程度。

此外,Davies-Bouldin指数没有假设聚类簇形状和大小的先验知识,因此可以适用于不同聚类场景。

Calinski-Harabasz Score

Calinski-Harabasz Score是一种用于评估聚类质量的指标,它基于聚类中心之间的方差和聚类内部的方差之比来计算。该指数越大,表示聚类效果越好。

Calinski-Harbasz Score是通过评估类之间方差和类内方差来计算得分,具体公式表示为:

$$

s=\frac{S S_B}{k-1} / \frac{S S_W}{N-k}

$$

其中,$k$代表聚类类别数,$N$代表全部数据数目,$SS_B$是类间方差,$SS_W$是类内方差。

$SS_B$的计算公式:

$$

S S_B=\operatorname{tr}\left(B_k\right)

$$

$$

Bk=\sum{q=1}^k n_q\left(c_q-c_E\right)\left(c_q-c_E\right)^T

$$

trace只考虑了矩阵对角上的元素,即类$q$中所有数据点到类的欧几里得距离。

$SS_W$的计算公式为:

$$

S S_W=\operatorname{tr}\left(W_k\right)

$$

$$

Wk=\sum{q=1}^k \sum_{x \in C_q}\left(x-c_q\right)\left(x-c_q\right)^T

$$

其中,$C_q$是类$q$中所有数据的集合,$c_q$是类q的质点,$c_E$是所有数据的中心点,$n_q$是类$q$数据点的总数。

Silhouette Score

Silhouette Score表示为轮廓系数。

Silhouette Score 是一种衡量聚类结果质量的指标,它结合了聚类内部的紧密度和不同簇之间的分离度。对于每个数据点,Silhouette Score 考虑了以下几个因素:

  • a:数据点到同簇其他点的平均距离(簇内紧密度)
  • b:数据点到最近不同簇的平均距离(簇间分离度)

具体而言,Silhouette Score 计算公式为:

$$Silhouette Score = \frac{(b - a)}{max(a, b)}$$

轮廓系数的取值在 -1 到 1 之间,越接近 1 表示聚类效果越好,越接近 -1 则表示聚类结果较差。

In 25:

代码语言:txt
复制
print(f"Davies bouldin score: {davies_bouldin_score(data_no_outliers,clusters_predict)}")
print(f"Calinski Score: {calinski_harabasz_score(data_no_outliers,clusters_predict)}")
print(f"Silhouette Score: {silhouette_score(data_no_outliers,clusters_predict)}")
Davies bouldin score: 1.6775659296391374
Calinski Score: 6914.724747148267
Silhouette Score: 0.1672869940907178

8 降维(基于Prince.PCA)

参考官网学习地址:https://github.com/MaxHalford/prince

8.1 降维函数

In 26:

代码语言:txt
复制
import prince 
import plotly.express as px


def get_pca_2d(df, predict):
    """
    建立聚类模型,保留2个主成分
    """
    pca_2d_object = prince.PCA(
        n_components=2,   #  保留两个主成分
        n_iter=3,  # 迭代次数
        rescale_with_mean=True,  # 基于均值和标准差的尺度缩放 
        rescale_with_std=True,
        copy=True,
        check_input=True,
        engine="sklearn",
        random_state=42
        )
    # 模型训练
    pca_2d_object.fit(df)
    # 原数据转换
    df_pca_2d = pca_2d_object.transform(df)
    df_pca_2d.columns = ["comp1", "comp2"]
    # 添加聚类预测结果
    df_pca_2d["cluster"] = predict
    
    return pca_2d_object, df_pca_2d


# 同样的方式创建保留3个主成分的功能函数
def get_pca_3d(df, predict):
    """
    保留3个主成分
    """
    pca_3d_object = prince.PCA(
    n_components=3,  # 保留3个主成分
    n_iter=3,  
    rescale_with_mean=True,
    rescale_with_std=True,
    copy=True,
    check_input=True,
    engine='sklearn',
    random_state=42
    )

    pca_3d_object.fit(df)

    df_pca_3d = pca_3d_object.transform(df)
    df_pca_3d.columns = ["comp1", "comp2", "comp3"]
    df_pca_3d["cluster"] = predict

    return pca_3d_object, df_pca_3d

8.2 降维可视化

下面是基于2个主成分的可视化绘图函数:

In 27:

代码语言:txt
复制
def plot_pca_2d(df, title="PCA Space", opacity=0.8, width_line=0.1):
    """
    2个主成分的降维可视化
    """
    df = df.astype({"cluster": "object"})  # 指定字段的数据类型
    df = df.sort_values("cluster")
    
    columns = df.columns[0:3].tolist()
    
    # 绘图
    fig = px.scatter(
        df,
        x=columns[0], 
        y=columns[1], 
        color='cluster',
        template="plotly",
        color_discrete_sequence=px.colors.qualitative.Vivid,
         title=title
     )
        
    # trace更新
    fig.update_traces(marker={
        "size": 8,
        "opacity": opacity,
        "line":{"width": width_line,
                "color":"black"}
    })
    
   # layout更新
    fig.update_layout(
        width=800,  # 长宽
        height=700,
        autosize=False,
        showlegend = True,
        legend=dict(title_font_family="Times New Roman", font=dict(size= 20)),
        scene = dict(xaxis=dict(title = 'comp1', titlefont_color = 'black'),
                     yaxis=dict(title = 'comp2', titlefont_color = 'black')),
        font = dict(family = "Gilroy", color  = 'black', size = 15))
    
    fig.show()    

下面是基于3个主成分的可视化绘图函数:

In 28:

代码语言:txt
复制
def plot_pca_3d(df, title="PCA Space", opacity=0.8, width_line=0.1):
    """
    3个主成分的降维可视化
    """
    df = df.astype({"cluster": "object"})
    df = df.sort_values("cluster")
    
    # 定义fig
    fig = px.scatter_3d(
        df,
        x='comp1', 
        y='comp2', 
        z='comp3',
        color='cluster',
        template="plotly",
        color_discrete_sequence=px.colors.qualitative.Vivid,
        title=title
    )
    
    # trace更新
    fig.update_traces(marker={
        "size":4,
        "opacity":opacity,
        "line":{"width":width_line,
                "color":"black"}
    })
    
    # layout更新
    fig.update_layout(
        width=800,  # 长宽
        height=800,
        autosize=True,
        showlegend = True,
        legend=dict(title_font_family="Times New Roman", font=dict(size= 20)),
        scene = dict(xaxis=dict(title = 'comp1', 
                                titlefont_color = 'black'),
                     yaxis=dict(title = 'comp2', 
                                titlefont_color = 'black'),
                     zaxis=dict(title = 'comp3', 
                                titlefont_color = 'black')),
        font = dict(family = "Gilroy", color  = 'black', size = 15))
    
    fig.show()
8.2.1 2维

下面是2维可视化的效果:

In 29:

代码语言:txt
复制
pca_2d_object, df_pca_2d = get_pca_2d(data_no_outliers, clusters_predict) 

In 30:

代码语言:txt
复制
plot_pca_2d(df_pca_2d, title = "PCA Space", opacity=1, width_line = 0.1)

可以看到聚类效果并不是很好,数据并没有隔离开。

8.2.2 3维

下面是3维可视化的效果:

In 31:

代码语言:txt
复制
pca_3d_object, df_pca_3d = get_pca_3d(data_no_outliers, clusters_predict)

In 32:

代码语言:txt
复制
plot_pca_3d(df_pca_3d, title = "PCA Space", opacity=1, width_line = 0.1)

print("The variability is : ", pca_3d_object.eigenvalues_summary)
代码语言:txt
复制
The variability is :            eigenvalue % of variance % of variance (cumulative)
component                                                    
0              2.245        11.81%                     11.81%
1              1.774         9.34%                     21.15%
2              1.298         6.83%                     27.98%

从结果中看到,聚类效果并不是很好,样本并没有分离开。

前面3个主成分的占比总共为27.98%,不足以捕捉到原始的数据信息和模式。下面介绍基于T-SNE的降维,该方法主要是用于高维数据的降维可视化:

9 降维优化(基于T-SNE)

取出部分样本

In 33:

代码语言:txt
复制
from sklearn.manifold import TSNE

# 无离群点的数据随机取数
sampling_data = data_no_outliers.sample(frac=0.5, replace=True, random_state=1)
# 聚类后的数据随机取数
# clusters_predict  表示从聚类结果中随机取数

sampling_cluster = pd.DataFrame(clusters_predict).sample(frac=0.5, replace=True, random_state=1)[0].values
sampling_cluster

Out33:

代码语言:txt
复制
array([4, 1, 1, ..., 2, 0, 4])

9.1 实施2D降维

9.1.1 降维

In 34:

代码语言:txt
复制
# 建立降维模型

tsne2 = TSNE(
    n_components=2,
    learning_rate=500, 
    init='random', 
    perplexity=200, 
    n_iter = 5000) 

In 35:

代码语言:txt
复制
data_tsne_2d = tsne2.fit_transform(sampling_data)

In 36:

代码语言:txt
复制
# 转成df格式 + 原聚类结果

df_tsne_2d = pd.DataFrame(data_tsne_2d, columns=["comp1","comp2"])
df_tsne_2d["cluster"] = sampling_cluster
9.1.2 可视化

In 37:

代码语言:txt
复制
plot_pca_2d(df_tsne_2d, title = "T-SNE Space", opacity=1, width_line = 0.1)  

9.2 实施3D降维

9.2.1 降维

对聚类后的结果实施T-SNE降维:

In 38:

代码语言:txt
复制
# 建立3D降维模型

tsne3 = TSNE(
    n_components=3,
    learning_rate=500, 
    init='random', 
    perplexity=200, 
    n_iter = 5000 
)

In 39:

代码语言:txt
复制
# 模型训练并转换数据

data_tsne_3d = tsne3.fit_transform(sampling_data)

In 40:

代码语言:txt
复制
# 转成df格式 + 原聚类结果

df_tsne_3d = pd.DataFrame(data_tsne_3d, columns=["comp1","comp2","comp3"])
df_tsne_3d["cluster"] = sampling_cluster
9.2.2 降维结果可视化

In 41:

代码语言:txt
复制
plot_pca_3d(df_tsne_3d, title = "T-SNE Space", opacity=1, width_line = 0.1)

对比两种降维方法在二维效果上的比较:很明显,T-SNE的效果好很多~

10 基于LGBMClassifer的分类

将无异常的原始数据df_no_outliers作为特征X,聚类后的标签clusters_predict作为目标标签y,建立一个LGBMClassifer分类模型:

10.1 建立模型

In 42:

代码语言:txt
复制
import lightgbm as lgb
import shap

clf_lgb = lgb.LGBMClassifier(colsample_by_tree=0.8)

# 将部分字段的数据类型进行转化
for col in ["job","marital","education","housing","loan","default"]:
    df_no_outliers[col] = df_no_outliers[col].astype("category")

    
clf_lgb.fit(X=df_no_outliers, 
            y=clusters_predict,
            feature_name = "auto", 
            categorical_feature = "auto"
           )
[LightGBM] [Warning] Unknown parameter: colsample_by_tree
[LightGBM] [Warning] Unknown parameter: colsample_by_tree
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000593 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 342
[LightGBM] [Info] Number of data points in the train set: 40690, number of used features: 8
[LightGBM] [Info] Start training from score -1.626166
[LightGBM] [Info] Start training from score -1.292930
[LightGBM] [Info] Start training from score -1.412943
[LightGBM] [Info] Start training from score -2.815215
[LightGBM] [Info] Start training from score -1.489282

Out42:

LGBMClassifier

代码语言:txt
复制
LGBMClassifier(colsample_by_tree=0.8)

10.2 shap可视化

In 43:

代码语言:txt
复制
explainer = shap.TreeExplainer(clf_lgb)  # 建立解释器
shap_values = explainer.shap_values(df_no_outliers)  # 求出shap值

shap.summary_plot(shap_values, df_no_outliers, plot_type="bar",plot_size=(15,10))

从结果中可以看到,age字段是最为重要的。

10.3 模型预测

In 44:

代码语言:txt
复制
y_pred = clf_lgb.predict(df_no_outliers)  # 预测
acc = accuracy_score(y_pred, clusters_predict)  # 预测值和真实值计算acc

# acc
print('Training-set accuracy score: {0:0.4f}'. format(acc))
[LightGBM] [Warning] Unknown parameter: colsample_by_tree
Training-set accuracy score: 1.0000

In 45:

代码语言:txt
复制
# 分类报告
print(classification_report(clusters_predict, y_pred))
              precision    recall  f1-score   support

           0       1.00      1.00      1.00      8003
           1       1.00      1.00      1.00     11168
           2       1.00      1.00      1.00      9905
           3       1.00      1.00      1.00      2437
           4       1.00      1.00      1.00      9177

    accuracy                           1.00     40690
   macro avg       1.00      1.00      1.00     40690
weighted avg       1.00      1.00      1.00     40690

10.4 聚合结果

In 46:

代码语言:txt
复制
# 原始数据无异常

df_no_outliers = df[df.outliers == 0]
df_no_outliers["cluster"] = clusters_predict  # 聚类结果

以聚类的簇结果cluster为分组字段:

  • 统计数值型字段的均值(mean)
  • 分类型字段的最高频数字段(分组后的第一个数据信息)

In 47:

代码语言:txt
复制
df_no_outliers.groupby("cluster").agg({
    "job":lambda x: x.value_counts().index[0],
    "marital": lambda x: x.value_counts().index[0],
    "education":lambda x: x.value_counts().index[0],
    "housing":lambda x: x.value_counts().index[0],
    "loan":lambda x: x.value_counts().index[0],
    "age":"mean",
    "balance":"mean",
    "default":lambda x: x.value_counts().index[0]
}).sort_values("age").reset_index()

Out47:

cluster

job

marital

education

housing

loan

age

balance

default

0

4

technician

single

secondary

yes

no

32.069740

794.696306

no

1

2

blue-collar

married

secondary

yes

no

34.569409

592.025644

no

2

3

management

married

secondary

yes

no

42.183012

7526.310217

no

3

0

management

married

tertiary

no

no

43.773960

872.797951

no

4

1

blue-collar

married

secondary

no

no

50.220989

836.407504

no

参考

参考原英文学习地址:https://towardsdatascience.com/mastering-customer-segmentation-with-llm-3d9008235f41

后面会给大家分享Transformer模型+Kmeans+PCA/T-SNE的方案~

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 项目导图
  • 2 导入库
  • 3 读取数据
  • 4 数据预处理Preprocessing
  • 5 创建pipeline
  • 6 异常处理(ECOD)
  • 7 聚类建模(K-Means)
    • 7.1 肘图识别k值
      • 7.2 轮廓系数变化
        • 7.3 实施聚类
          • 7.4 评价聚类效果
            • Davies-Bouldin指数
            • Calinski-Harabasz Score
            • Silhouette Score
        • 8 降维(基于Prince.PCA)
          • 8.1 降维函数
            • 8.2 降维可视化
              • 8.2.1 2维
              • 8.2.2 3维
          • 9 降维优化(基于T-SNE)
            • 9.1 实施2D降维
              • 9.1.1 降维
              • 9.1.2 可视化
            • 9.2 实施3D降维
              • 9.2.1 降维
              • 9.2.2 降维结果可视化
          • 10 基于LGBMClassifer的分类
            • 10.1 建立模型
              • 10.2 shap可视化
                • 10.3 模型预测
                  • 10.4 聚合结果
                  • 参考
                  领券
                  问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档