#include<stdio.h>
int main()
{
printf("Hello world\n");
return 0;
}
作为C语言最经典的代码,大家都可以轻易写出。但是代码的运行过程却很少有人清楚,接下来我将介绍代码运行的奥秘。
实际上,运行过程中包括四个过程:预处理,编译,汇编,链接。 具体过程如下:
在预处理阶段,源⽂件和头⽂件会被处理成为.i为后缀的⽂件。 在 gcc 环境下想观察⼀下,对 test.c ⽂件预处理后的.i⽂件,命令如下:
1 gcc -E test.c -o test.i
预处理阶段主要处理那些源⽂件中#开始的预编译指令。⽐如:#include,#define,处理的规则如下: • 将所有的 #define 删除,并展开所有的宏定义。 • 处理所有的条件编译指令,如: #if、#ifdef、#elif、#else、#endif 。 • 处理#include 预编译指令,将包含的头文件的内容插入到该预编译指令的位置。这个过程是递归进行的,也就是说被包含的头文件也可能包含其他文件。 • 删除所有的注释 • 添加行号和文件名标识,方便后续编译器⽣成调试信息等。 • 或保留所有的#pragma的编译器指令,编译器后续会使用。 注意: 经过预处理后的.i⽂件中不再包含宏定义,因为宏已经被展开。并且包含的头⽂件都被插⼊到.i⽂件中。所以当我们⽆法知道宏定义或者头⽂件是否包含正确的时候,可以查看预处理后的.i文件来确认。
编译环节是比较复杂的,包含一系列词法分析,语法分析,语义分析以及优化后生成相应的汇编语言代码文件。这个过程是整个程序最重要的过程。
将源代码程序被输⼊扫描器,扫描器的任务就是简单的进⾏词法分析,把代码中的字符分割成⼀系列的记号(关键字、标识符、字⾯量、特殊字符等)。 通过 lex的程序可以做到快速扫描词法,帮助开发者不需要为每个编译器开发相应词法扫描器。
在进行完词法分析后,会生成相应记号,然后对记号进行语法分析,从而产生语法树。该过程采用“上下文无关语法”的分析手段(该语法我尚且不了解,如有需要可自行查找)。 语法树类似于:
array[index] = (index+4)*(2+6);
可见一个语句被拆解为不同板块,同时进行操作符的优先级的记录等过程。 并且和上面的lex程序一样语法分析有yacc程序帮助解析过程。
在该过程中会将不同语句分段并标明类型,如下:
汇编器是将汇编代码转转变成机器可执⾏的指令,每⼀个汇编语句⼏乎都对应⼀条机器指令。就是根据汇编指令和机器指令的对照表⼀⼀的进⾏翻译,也不做指令优化。 汇编的命令如下:
gcc -c test.s -o test.o
这样我们就生成了汇编语言文件。(这个过程是比较复杂的)
链接是⼀个复杂的过程,链接的时候需要把⼀堆⽂件链接在⼀起才⽣成可执⾏程序。 链接过程主要包括:地址和空间分配,符号决议和重定位等这些步骤。 链接解决的是⼀个项⽬中多⽂件、多模块之间互相调⽤的问题。 ⽐如:
test.c
#include <stdio.h>
//test.c
//声明外部函数
extern int Add(int x, int y);
//声明外部的全局变量
extern int g_val;
int main(){
int a = 10;
int b = 20;
int sum = Add(a, b);
printf("%d\n", sum);
return 0;
}
add.c
int g_val = 2022;
int Add(int x, int y)
{
return x+y;
}
此时存在两个源文件,我们已经知道,每个源⽂件都是单独经过编译器处理⽣成对应的⽬标⽂件。 test.c 经过编译器处理⽣成 test.o add.c 经过编译器处理⽣成 add.o 我们在 test.c 的⽂件中使⽤了 add.c ⽂件中的 Add 函数和 g_val 变量。 我们在 test.c ⽂件中每⼀次使⽤ Add 函数和 g_val 的时候必须确切的知道 Add 和 g_val 的地址, 但是由于每个⽂件是单独编译的,在编译器编译 test.c 的时候并不知道 Add 函数和 g_val变量的地址,所以暂时把调⽤ Add 的指令的⽬标地址和 g_val 的地址搁置。 等待最后链接的时候由链接器根据引⽤的符号 Add 在其他模块中查找 Add 函数的地址,然后将 test.c 中所有引⽤到Add 的指令重新修正,让他们的⽬标地址为真正的 Add 函数的地址,对于全局变量 g_val 也是类似的⽅法来修正地址。 这个地址修正的过程也被叫做:重定位。
经过这些处理我们会成功运行程序
运行环境对代码程序运行也有重要作用。