前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Google Earth Engine ——2017-2018年伊朗土地覆盖/土地利用数据集KNTU/LiDARLab/IranLandCover/V1

Google Earth Engine ——2017-2018年伊朗土地覆盖/土地利用数据集KNTU/LiDARLab/IranLandCover/V1

作者头像
此星光明
发布2024-02-02 09:14:34
1300
发布2024-02-02 09:14:34
举报

The Iran-wide land cover map was generated by processing Sentinel imagery within the Google Earth Engine Cloud platform. For this purpose, over 2,500 Sentinel-1 and over 11,000 Sentinel-2 images were processed to produce a single mosaic dataset for the year 2017. Then, an object-based Random Forest classification method was trained by a large number of reference samples for 13 classes to generate the Iran-wide land cover map.

伊朗全境的土地覆盖图是通过在谷歌地球引擎云平台内处理哨兵图像生成的。为此,处理了2500多张哨兵一号和11000多张哨兵二号图像,生成了2017年的单一马赛克数据集。然后,通过大量的参考样本对13个类别进行基于对象的随机森林分类方法的训练,以生成伊朗范围内的土地覆盖图。

Dataset Availability

2017-01-01T00:00:00 - 2018-01-01T00:00:00

Dataset Provider

K. N. Toosi University of Technology LiDAR Lab

Collection Snippet

ee.Image("KNTU/LiDARLab/IranLandCover/V1")

Bands Table

Name

Description

Resolution

classification

Classification

10 meters

Class Table: classification

Value

Color

Color Value

Description

1

#000000

Urban

2

#006eff

Water

3

#41a661

Wetland

4

#ff7f7f

Kalut (yardang)

5

#bee8ff

Marshland

6

#ff00c5

Salty Land

7

#ff0000

Clay

8

#00734c

Forest

9

#732600

Outcrop

10

#ffaa00

Uncovered Plain

11

#d3ffbe

Sand

12

#446589

Farm Land

13

#cccccc

Range Land

数据说明:This work "Iran Land Cover Map v1 13-class (2017)" by Arsalan Ghorbanian, Mohammad Kakooei, Meisam Amani, Sahel Mahdavi, Ali Mohammadzadeh, Mahdi Hasanlou is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

引用:Ghorbanian, A., Kakooei, M., Amani, M., Mahdavi, S., Mohammadzadeh, A., & Hasanlou, M. (2020). Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 276-288. doi:10.1016/j.isprsjprs.2020.07.013

代码:

代码语言:javascript
复制
var dataset = ee.Image("KNTU/LiDARLab/IranLandCover/V1");

var visualization = {
  bands: ['classification']
};

Map.setCenter(54.0, 33.0, 5);

Map.addLayer(dataset, visualization, "Classification");
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-02-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档