你有时候会不会有道这样的问题:
ConfusionMatrix (Error)
Property 'landcover' of feature '1_1_1_1_1_1_1_1_0_0' is missing.
我这里举一个例子,很多时候我们在进行混淆矩阵分析的时候都会出现这个状况,这个状况出现的主要原因是我们缺少了关键的属性名称。比如我们要做分类我们缺少了一个属性,需要”landcover“,在这之前我们首先要确保我们每一个所选的样本点都包含这个属性,但是不需要固定的名称,可以随便,只要在分类的时候让其拥有这个属性即可。
在此之前还需要确保每一个你选的样本点集合都是矢量集合,这样才能才可能继续分类。
解决方案:样本点属性设置进行修改
错误似乎出现在第11行,var newfc = urban.merge(vegetation).merge(water).merge(urban).merge(fields);
确保urban和其他是配置几何导入工具中的一个FeatureCollection。 添加属性 "土地覆盖",数值1代表城市,2代表水,以此类推。 你可以检查print(newfc)并查看属性,检查特征 "1_1_1_0_0"。
之前的代码:这里我们需要修改的不是代码本身而是样本点的属性,记住这一点就行了
var landsatCollection = ee.ImageCollection('LANDSAT/LC08/C01/T1')
.filterDate('2017-01-01', '2017-12-31');
// Make a cloud-free composite.
var composite = ee.Algorithms.Landsat.simpleComposite({
collection: landsatCollection,
asFloat: true
});
// Merge the three geometry layers into a single FeatureCollection.
var newfc = urban.merge(vegetation).merge(water).merge(urban).merge(fields);
// Use these bands for classification.
var bands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7'];
// The name of the property on the points storing the class label.
var classProperty = 'landcover';
// Sample the composite to generate training data. Note that the
// class label is stored in the 'landcover' property.
var training = composite.select(bands).sampleRegions({
collection: newfc,
properties: [classProperty],
scale: 30
});
// Train a CART classifier.
var classifier = ee.Classifier.smileCart().train({
features: training,
classProperty: [classProperty],
});
// Print some info about the classifier (specific to CART).
print('CART, explained', classifier.explain());
// Classify the composite.
var classified = composite.classify(classifier);
Map.centerObject(newfc);
Map.addLayer(classified, {min: 0, max: 3, palette: ['red', 'blue', 'green','yellow']});
// Optionally, do some accuracy assessment. Fist, add a column of
// random uniforms to the training dataset.
var withRandom = training.randomColumn('random');
// We want to reserve some of the data for testing, to avoid overfitting the model.
var split = 0.7; // Roughly 70% training, 30% testing.
var trainingPartition = withRandom.filter(ee.Filter.lt('random', split));
var testingPartition = withRandom.filter(ee.Filter.gte('random', split));
// Trained with 70% of our data.
var trainedClassifier = ee.Classifier.smileCart().train({
features: trainingPartition,
classProperty: classProperty,
inputProperties: bands
});
// Classify the test FeatureCollection.
var test = testingPartition.classify(trainedClassifier);
// Print the confusion matrix.
var confusionMatrix = test.errorMatrix(classProperty, 'classification');
print('Confusion Matrix', confusionMatrix);