前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >单细胞Seurat - 数据处理 (2)

单细胞Seurat - 数据处理 (2)

作者头像
数据科学工厂
发布2024-02-22 15:22:47
发布2024-02-22 15:22:47
39800
代码可运行
举报
运行总次数:0
代码可运行

本系列持续更新Seurat单细胞分析教程,欢迎关注!

标准化

从数据集中删除不需要的细胞后,下一步是数据标准化。默认情况下,我们采用全局缩放标准化方法“LogNormalize”,该方法将每个单元格的特征表达测量值标准化为总表达,将其乘以比例因子(默认为 10,000),并对结果进行对数转换。在 Seurat v5 中,标准化值存储在 pbmc[["RNA"]]$data 中。

代码语言:javascript
代码运行次数:0
运行
复制
pbmc <- NormalizeData(pbmc, normalization.method = "LogNormalize", scale.factor = 10000)

为了清楚起见,在前面的代码行中,我们为函数调用中的某些参数提供了默认值。

代码语言:javascript
代码运行次数:0
运行
复制
pbmc <- NormalizeData(pbmc)

虽然这种标准化方法是标准方法并广泛用于 scRNA-seq 分析,但全局缩放依赖于每个细胞最初包含相同数量的 RNA 分子的假设。我们和其他人已经为单细胞预处理开发了替代工作流程,但不做出这些假设。对于感兴趣的用户,请查看 SCTransform() 标准化工作流程,论文[1]中描述了该方法。

特征选择:识别高度可变的特征

接下来,我们计算数据集中表现出高细胞间差异的特征子集(即它们在某些细胞中高度表达,而在其他细胞中表达较低)。在下游分析中关注这些基因有助于突出单细胞数据集中的生物信号。

默认情况下Seurat每个数据集返回 2,000 个特征。这些将用于下游分析,例如 PCA。

代码语言:javascript
代码运行次数:0
运行
复制
pbmc <- FindVariableFeatures(pbmc, selection.method = "vst", nfeatures = 2000)

# Identify the 10 most highly variable genes
top10 <- head(VariableFeatures(pbmc), 10)

# plot variable features with and without labels
plot1 <- VariableFeaturePlot(pbmc)
plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)
plot1 + plot2

缩放数据

接下来,我们应用线性变换(“缩放”),这是 PCA 等降维技术之前的标准预处理步骤。 ScaleData() 函数:

  • 改变每个基因的表达值,使细胞间的平均表达为 0
  • 缩放每个基因的表达,使细胞间的方差为 1
    • 此步骤在下游分析中给予同等的权重,因此高表达的基因不会占主导地位
  • 结果存储在 pbmc[["RNA"]]$scale.data 中
  • 默认情况下,仅缩放可变特征。
  • 您可以指定 features 参数来缩放附加功能
代码语言:javascript
代码运行次数:0
运行
复制
all.genes <- rownames(pbmc)
pbmc <- ScaleData(pbmc, features = all.genes)
  • 如何消除不需要的变异源

在 Seurat 中,使用 ScaleData() 函数从单细胞数据集中删除不需要的变异源。例如,我们可以“回归”与细胞周期阶段或线粒体污染相关的异质性,即:

代码语言:javascript
代码运行次数:0
运行
复制
pbmc <- ScaleData(pbmc, vars.to.regress = "percent.mt")

但是,特别是对于想要使用此功能的高级用户,我们强烈建议使用新的规范化工作流程 SCTransform()。与 ScaleData() 一样,函数 SCTransform() 也包含 vars.to.regress 参数。

线性降维

接下来我们对缩放后的数据执行 PCA。默认情况下,仅将先前确定的可变特征用作输入,但如果您希望选择不同的子集,则可以使用 features 参数进行定义(如果您确实想使用自定义的特征子集,请确保首先将它们传递给 ScaleData )。

对于第一个主成分,Seurat 输出具有最大正负载荷的基因列表,代表在数据集中的单细胞之间表现出相关(或反相关)的基因模块。

代码语言:javascript
代码运行次数:0
运行
复制
pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc))

Seurat 提供了几种有用的方法来可视化定义 PCA 的单元格和特征,包括 VizDimReduction()、DimPlot() 和 DimHeatmap()

代码语言:javascript
代码运行次数:0
运行
复制
# Examine and visualize PCA results a few different ways
print(pbmc[["pca"]], dims = 1:5, nfeatures = 5)

## PC_ 1 
## Positive:  CST3, TYROBP, LST1, AIF1, FTL 
## Negative:  MALAT1, LTB, IL32, IL7R, CD2 
## PC_ 2 
## Positive:  CD79A, MS4A1, TCL1A, HLA-DQA1, HLA-DQB1 
## Negative:  NKG7, PRF1, CST7, GZMB, GZMA 
## PC_ 3 
## Positive:  HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPB1 
## Negative:  PPBP, PF4, SDPR, SPARC, GNG11 
## PC_ 4 
## Positive:  HLA-DQA1, CD79B, CD79A, MS4A1, HLA-DQB1 
## Negative:  VIM, IL7R, S100A6, IL32, S100A8 
## PC_ 5 
## Positive:  GZMB, NKG7, S100A8, FGFBP2, GNLY 
## Negative:  LTB, IL7R, CKB, VIM, MS4A7

VizDimLoadings(pbmc, dims = 1:2, reduction = "pca")
代码语言:javascript
代码运行次数:0
运行
复制
DimPlot(pbmc, reduction = "pca") + NoLegend()

特别是 DimHeatmap() 允许轻松探索数据集中异质性的主要来源,并且在尝试决定包含哪些 PC 进行进一步的下游分析时非常有用。细胞和特征均根据其 PCA 分数进行排序。将细胞设置为数字会在频谱两端绘制“极端”细胞,这会显着加快大型数据集的绘图速度。虽然是一种监督分析,但我们发现这是探索相关特征集的宝贵工具。

代码语言:javascript
代码运行次数:0
运行
复制
DimHeatmap(pbmc, dims = 1, cells = 500, balanced = TRUE)
代码语言:javascript
代码运行次数:0
运行
复制
DimHeatmap(pbmc, dims = 1:15, cells = 500, balanced = TRUE)

未完待续,持续更新,欢迎关注!

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-02-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 冷冻工厂 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 标准化
  • 特征选择:识别高度可变的特征
  • 缩放数据
  • 线性降维
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档