前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >数据结构——堆的应用 堆排序详解

数据结构——堆的应用 堆排序详解

作者头像
大耳朵土土垚
发布2024-03-13 18:49:41
890
发布2024-03-13 18:49:41
举报
文章被收录于专栏:c/c++

在土土的上篇博客二叉树堆的介绍与实现中,我们发现测试代码是升序;今天我们就来分析堆的重要应用——**堆排序**🎉🎉。 升序实现如下:

代码语言:javascript
复制
#include"Heap.h"
int main()
{
	Heap hp;
	HeapInit(&hp);
	int a[] = { 65,100,70,32,50,60 };
	for (int i = 0; i < 6; i++)
	{
		HeapPush(&hp, a[i]);
	}
	while (!HeapEmpty(&hp))
	{
		int top = HeapTop(&hp);
		printf("%d\n", top);
		HeapPop(&hp);
	}
    HeapDestroy(&hp);
	return 0;
}

详情可在土土的博客数据结构——lesson7二叉树堆的介绍与实现中查看🥳🥳

一、堆排序(基础版)

既然是堆排序,那我们首先肯定得有一个堆,这里土土就可以偷个懒将上篇博客中实现的堆代码copy一下🥰🥰

堆的实现

代码语言:javascript
复制
#include"Heap.h"
//堆的初始化
void HeapInit(Heap* hp)
{
	assert(hp);
	hp->a = NULL;
	hp->capacity = 0;
	hp->size = 0;
}
// 堆的销毁
void HeapDestroy(Heap* hp)
{
	assert(hp);
	free(hp->a);
	hp->a = NULL;
	hp->capacity = 0;
	hp->size = 0;
}
//交换函数
void Swap(HPDataType* a,HPDataType* b)
{
	HPDataType tmp = *a;
	*a = *b;
	*b = tmp;
}

//堆向下调整算法
void AdjustDown(HPDataType* a, int n,int parent)
{
	//找到较小的孩子节点
	int child = parent * 2 + 1;
	
	//向下调整
	while (child < n)
	{
		if (child + 1 < n && a[child] > a[child + 1])
		{
			child++;
		}
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = child * 2 + 1;
		}
		else
			break;
		
	}
}

//向上调整
void AdjustUp(HPDataType* a,int child)
{
	//找到双亲节点
	int parent = (child - 1) / 2;
	//向上调整
	while (child > 0)
	{
		if (a[parent] > a[child])
		{
			Swap(&a[parent], &a[child]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
			break;
		
	}
}
// 堆的插入
void HeapPush(Heap* hp, HPDataType x)
{
	assert(hp);
	//判断容量
	if (hp->size == hp->capacity)//容量满了扩容
	{
		int newcapacity = hp->capacity == 0 ? 0 : 2 * hp->capacity;
		HPDataType* new = (HPDataType*)realloc(hp->a, sizeof(HPDataType) * newcapacity);
		if (new == NULL)
		{
			perror("realloc fail");
			return;
		}
		hp->a = new;
		hp->capacity = newcapacity;
	}
	//尾插
	hp->a[hp->size] = x;
	hp->size++;
	//向上调整算法
	AdjustUp(hp->a,hp->size-1);
}
// 堆的删除,删除堆顶元素
void HeapPop(Heap* hp)
{
	assert(hp);
	assert(!HeapEmpty(hp));
	Swap(&hp->a[0], &hp->a[hp->size - 1]);
	hp->size--;
	//向下调整算法
	AdjustDown(hp->a, hp->size, 0);

}
// 取堆顶的数据
HPDataType HeapTop(Heap* hp)
{
	assert(hp);
	assert(!HeapEmpty(hp));
	return hp->a[0];
}
// 堆的数据个数
int HeapSize(Heap* hp)
{
	assert(hp);
	return hp->size;

}
// 堆的判空
int HeapEmpty(Heap* hp)
{
	assert(hp);
	return hp->size == 0;
}

当然在使用这些函数时要记得先声明一下,这里我们都放到一个头文件Heap.h中

Heap.h

代码语言:javascript
复制
#pragma once
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
typedef int HPDataType;
//构建一个结构体封装堆
typedef struct Heap
{
	HPDataType* a;//数组顺序表
	int size;//堆元素个数
	int capacity;//数组空间
}Heap;
//以下是实现堆的函数
// 堆的初始化
void HeapInit(Heap* hp);
// 堆的销毁
void HeapDestroy(Heap* hp);
// 堆的插入
void HeapPush(Heap* hp, HPDataType x);
// 堆的删除
void HeapPop(Heap* hp);
// 取堆顶的数据
HPDataType HeapTop(Heap* hp);
// 堆的数据个数
int HeapSize(Heap* hp);
// 堆的判空
int HeapEmpty(Heap* hp);

使用时只需包含该头文件即可 #include"Heap.h"

堆排序

给定一个数组a[ ] = {7,8,3,5,1,9,5,4},我们需要利用上面的堆来将它进行排序

🤩🤩思路: ①我们首先需要将数组中的元素插入堆中(利用HeapPush函数), 💫前面我们已经学习过堆插入函数,它里面利用堆向上调整算法会自动将插入的数据调整为一个堆(我们实现的是小堆); ②然后我们需要获取堆顶元素(也就是小堆中最小的元素),利用HeapTop函数即可; ③获取最小元素后我们就需要获取次小元素,先利用堆的删除函数(HeapPop函数),将堆顶元素(也就是小堆中最小的元素)删除; 💞删除函数中堆向下调整算法又会将剩余元素调整为小堆,此时堆顶元素就是删除一个元素后最小的元素; ④将删除后的元素重新拷贝回数组a中; ⑤循环②③两步直到全部排序成功。

代码实现如下:

代码语言:javascript
复制
 #include"Heap.h"
void HeapSort(int* a,int size)
{
	Heap hp;
	HeapInit(&hp);
	//将a中元素插入堆中
	for (int i = 0; i < size; i++)
	{
		HeapPush(&hp, a[i]);
	}
	//获取堆顶(最小)元素并删除
	int i = 0;
	while (i < size)
	{
		a[i++] = HeapTop(&hp);
		HeapPop(&hp);
	}
	HeapDestroy(&hp);
}
int main()
{
	int a[] = { 7,8,3,5,1,9,5,4 };
	int size = sizeof(a) / sizeof(int);
	HeapSort(a,size);
	return 0;
}

🥳🥳结果如下: 排序前:

排序后:

💥💥上述堆排序的实现尽管能够实现排序,但是…我们发现如果没有提前实现堆或者准备好堆的代码,我们是没办法实现的,而且我们需要来回拷贝数据,空间复杂度较大。 🥰🥰这里就需要介绍下面简便版堆排序啦~

二、堆排序(简便版)

在土土的数据结构学习笔记数据结构——lesson7二叉树堆的介绍与实现中,详细介绍了堆向上调整算法与堆向下调整算法,接下来我们就可以利用这两个函数来实现堆以及堆的排序🥳🥳

(1)利用堆向上或向下调整算法实现堆

堆向上调整算法实现

代码语言:javascript
复制
//向上调整算法
void AdjustUp(HPDataType* a,int child)
{
	//找到双亲节点
	int parent = (child - 1) / 2;
	//向上调整
	while (child > 0)
	{
		if (a[parent] > a[child])
		{
			Swap(&a[parent], &a[child]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
			break;
		
	}
}

数组a[ ] = {7,8,3,5,1,9,5,4},我们可以看成一个二叉树:

只需要从第二个数8开始每次读取一个数据都向上调整为堆,那么读完整个数组就可以得到一个堆啦~🥰🥰

代码语言:javascript
复制
//从第二个数据开始向上调整建堆
for (int i = 1; i < size; i++)
{
	AdjustUp(a, i);
}

🤩🤩之前基础版排序是又开辟了一个空间来存放a中的数据,排成堆后又每次选取最小的元素拷贝回a中,不仅麻烦而且会增加空间的使用; 所以简便版排序便直接将a看成一个二叉树利用向上调整算法直接成堆,不需要开辟额外的空间。

堆向下调整算法实现

🥰🥰类似于向上调整算法的实现,所不同的是开始调整的位置不再从第二个数开始,而是从最后一个非叶子节点开始向下调整:

调整完了再依次往前找到前一个非叶子节点(下标是元素个数size-2再除2)重复向下调整即可; 🥳🥳使用向下调整的时间复杂度较向上调整小,所以我们这里选择用向下调整

代码如下:

代码语言:javascript
复制
//堆向下调整算法
for (int i = (size-2 )/ 2 ; i >= 0; i--)
{
	AdjustDown(a, size, i);
}

结果如下:

可以发现已经将其调整为一个小堆了🥳🥳

(2)利用堆向下调整算法排序

那我们应该怎么将堆中的元素排序呢? 🥳🥳这就要利用堆向下调整算法了

思路🥳🥳

①交换首尾元素,将堆中最小的元素(首元素)换到尾部; ②将交换后的尾部元素忽略,剩余元素利用堆向下调整算法(除头外左右子树都是堆)调整为堆;

③重复②直到全部排完,得到降序数组:

代码如下:

代码语言:javascript
复制
//排序
int end = size-1;//堆底元素下标
while (end)
{
	Swap(&a[0], &a[end]);
	AdjustDown(a, end, 0);
	end--;
}

🤩🤩Swap函数在这里:

代码语言:javascript
复制
//交换函数
void Swap(HPDataType* a, HPDataType* b)
{
	HPDataType tmp = *a;
	*a = *b;
	*b = tmp;
}

(3)完整实现🥳🥳

代码语言:javascript
复制
void HeapSort(int* a,int size)
{
	//堆向下调整算法
	 for (int i = (size-1 )/ 2 ; i >= 0; i--)
	{
		AdjustDown(a, size, i);
	}
	
	//排序
	int end = size-1;//堆底元素下标
	while (end)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}

}
int main()
{
	int a[] = { 7,8,3,5,1,9,5,4 };
	HeapSort(a, 8);

	return 0;
}

结果如下:

✨✨思考:如果我们要排升序应该利用什么堆呢?相信大家通过上面的学习与理解都知道应该用大堆对不对?具体代码大家可以参考上面小堆实现降序来自己试着写一写哦~

三、结语

以上就是堆的应用——堆排序啦~,我们发现可以不用写堆的实现代码就可以将一个数组排成堆🥳🥳,关键在于堆向上调整与向下调整算法的理解与运用,大家都学废了吗 ,💞💞 完结撒花 ~🎉🎉🎉

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-03-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、堆排序(基础版)
  • 二、堆排序(简便版)
    • (1)利用堆向上或向下调整算法实现堆
      • (2)利用堆向下调整算法排序
        • (3)完整实现🥳🥳
        • 三、结语
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档