前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >算法与数据结构高手养成:朴素的贪心法(上)最优化策略

算法与数据结构高手养成:朴素的贪心法(上)最优化策略

作者头像
Srlua
发布2024-05-30 12:55:25
1010
发布2024-05-30 12:55:25
举报
文章被收录于专栏:CSDN社区搬运CSDN社区搬运

目录​​​​​​​

朴素的贪心法(上)最优化策略

常见贪心法归类

何为“朴素”贪心

最优化策略:取石子

取石子(改)

最优化策略适用条件

最优化策略:分析步骤

例题:机器工厂(USACO)​

步骤1:划分阶段和决策

步骤2:验证最优子结构/无后效性

步骤2.5:修改决策

步骤2.5:重新验证最优子结构/无后效性

步骤3:最优化策略

步骤3:最优化策略(改进)​

代码:机器工厂(C++)


朴素的贪心法(上)最优化策略

常见贪心法归类

1.最优化策略——每一次都采用当前最优决策

2.构造法——通过总结和归纳找到规律,直接推导出答案

3.二分答案——通过答案反推,验证合法性从而确定最优解

何为“朴素”贪心

  • 所谓“朴素”,就是可以通过确定性的贪心步骤得出最优解
  • 有些问题很难通过确定性贪心步骤得到最优解,但可以通过在贪心时加入随机因素(不是每次都选最优策略,而是几种较好策略中随机选择一种),来得到近似最优解
  • 当随机次数足够多时,这个近似最优解就会无限逼近最优解这个方法称为随机贪心法,后续会

最优化策略:取石子

每次都选取最大~

取石子(改)

由于条件限制,不能做到每次都拿最多,如果第一次拿3,第二次拿4时,第三次就不能再拿了

不适用贪心,但动态规划可解

最优化策略适用条件

第一,有明确的阶段,且每个阶段的决策都很清晰

  • 阶段一定是按顺序执行的
  • 对于第K(1≤K≤N)个阶段,前K轮的最优决策集合称为局部最优解当K=N时,称为全局最优解

第二,一个阶段的局部最优解,一定是从前面阶段的局部最优解得到的,这个特性称之为最优子结构

  • 例:取石子里,第二轮如果取4,那么无论第三轮取什么,总数一定不是最多。只有第二轮取5(局部最优解)第三轮才有可能产生总数最多的情况
  • 反例:取石子(改)里,第二轮取5是当前最优,但第三轮取4是最优。只有第二轮不取当前最优时,第三轮才能取到最优——不适用贪心法

第三,后面阶段的决策,不会影响到前面阶段的决策,这个特性称为无后效性

  • 例:无论第二轮取哪一堆,都不影响第一轮取的石子
  • 反例:题目修改为“每种数目的石子只能取一次,比如这一次取了5个,下一次就不能再取5个”——后面选择跟前面冲突的话,就需要返回修改之前的选择

最优化策略:分析步骤

1.划分问题的阶段决策

2.验证最优子结构无后效性

3.通过比较和判断,确定每一步的最优策略

例题:机器工厂(USACO)

步骤1:划分阶段和决策
  • 阶段:周数 K(1 ≤K≤ N)
  • 决策:第 K周生产多少台机器
步骤2:验证最优子结构/无后效性
  • 无后效性:满足
  • 因为第 K 周生产几台都不影响第1~K-1周的交付(不可能后面生产的穿越回去交付前面的订单)
  • 最优子结构呢?

局部最优解定义:完成前 K周订单的总成本最小(K=N)时就是全局最优解 在这个定义下,局部最优解一定是刚好满足K周订单需求即可不会额外生产供以后交付,否则会浪费

不满足最优子结构?

步骤2.5:修改决策
  • 问题出在决策:不能只满足本周的需求而不考虑后续需要
  • 反向思考1:本周要交付的机器可以是本周生产,也可以是之前生产
  • 反向思考2:不管前面是哪周生产,成本都可以直接算出来(等于该周生产成本+储藏成本x周数差)

例:前三周每个机器生产成本分别是1,5,6,储藏成本是2

第三周要交付的机器如果在当周生产,成本是6,如果要在第二周生产,成本是5+2x1=7;如果要在第一周生产,成本是1+2x2=5

所以,第三周交付的机器,在第一周生产最省钱

步骤2.5:重新验证最优子结构/无后效性
  • 决策修改为:第K周要交付的机器应该在第几周生产
  • 无后效性仍然满足
  • 最优子结构也满足:前K周总成本最低的情况,一定是从前K-1周总成本最低的情况推出来的
步骤3:最优化策略
  • 对于第K周,计算本周交付的机器在第i(1≤i≤K)周生产并储藏到第K周,分别所需要的成本
  • 选择成本最低的一周,由它来生产第K周需要交付的订单
  • 将这个最低的成本加上前K-1周的最低总成本,得到前K周的最低总成本(局部最优解)。K=N时得到的就是最终答案

虽然问题解决了,但是这个方法的效率还有提升空间

决策时,选择某一成本最低的一周的时候,我们刚刚采用的策略是挨个计算出每一周的成本,从而选择最小的,涉及了很多重复计算,成本的变化是有一定规律的,并不需要每次都进行计算~

步骤3:最优化策略(改进)

直接把时间复杂度降低了一个数量级~时间复杂度对O(n)

代码:机器工厂(C++)
代码语言:javascript
复制
    int n, s; // 声明变量n和s,分别表示总共的星期数和保养一台机器的费用
    cin >> n >> s; // 输入总星期数和保养费用
    int p, y, min_p = INT_MAX - s; // 声明变量p、y和min_p,min_p初始化为INT_MAX-s,用来存放当前最小的生产成本
    long long total = 0; // 声明变量total用来存放总花费
    for (int i = 0 ;i < n; i++) // 循环n次,表示n个星期
    {
        cin >> p >> y; // 输入当前星期生产一台机器的成本p和订单数量y
        min_p = min(min_p + s, p); // 对当前最小成本进行更新,考虑了保养费用
        total += min_p * y; // 计算当前星期的总花费,加上当前最小成本乘以订单数量
    }
    cout << total << endl; // 输出总花费

    return 0;
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-05-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 朴素的贪心法(上)最优化策略
    • 常见贪心法归类
      • 何为“朴素”贪心
        • 最优化策略:取石子
          • 取石子(改)
            • 最优化策略适用条件
              • 最优化策略:分析步骤
                • 例题:机器工厂(USACO)
                  • 步骤1:划分阶段和决策
                  • 步骤2:验证最优子结构/无后效性
                  • 步骤2.5:修改决策
                  • 步骤2.5:重新验证最优子结构/无后效性
                  • 步骤3:最优化策略
                  • 步骤3:最优化策略(改进)
                  • 代码:机器工厂(C++)
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档