前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【海贼王的数据航海】时间复杂度 | 空间复杂度

【海贼王的数据航海】时间复杂度 | 空间复杂度

作者头像
枫叶丹
发布2024-06-04 12:18:48
730
发布2024-06-04 12:18:48
举报
文章被收录于专栏:C++

1 -> 算法效率

1.1 -> 如何衡量一个算法的好坏?

对于以下斐波那契数列:

代码语言:javascript
复制
#define _CRT_SECURE_NO_WARNINGS

#include <iostream>
using namespace std;

long long fib(int N)
{
	if (N < 3)
		return 1;

	return fib(N - 1) + fib(N - 2);
}

int main()
{

	

	return 0;
}

用递归实现斐波那契数列,看上去代码十分简洁,但简洁一定就是好算法吗?如何衡量一个算法的好坏?

1.2 -> 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机存储容量很小。所以对于空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要特别关注一个算法的空间复杂度。

2 -> 时间复杂度

2.1 -> 时间复杂度的概念

定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上来讲,是不能算出来的,只有把程序放在机器上跑起来才能知道。但是我们需要每个算法都上机测试吗?固然可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方法。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

代码语言:javascript
复制
#define _CRT_SECURE_NO_WARNINGS

#include <iostream>
using namespace std;

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)
		for (int j = 0; j < N; ++j)
			++count;

	for (int k = 0; k < 2 * N; ++k)
		++count;

	int M = 10;
	while (M--)
		++count;

	cout << count << endl;
}

int main()
{


	return 0;
}

Func1执行的基本操作数:

F(N) = N^{2} + 2N + 10
F(N) = N^{2} + 2N + 10

-> N = 10 F(N) = 130 -> N = 100 F(N) = 10210 -> N = 1000 F(N) = 1002010

实际我们在计算时间复杂度时,并不一定要计算精确的执行次数,只需要大概执行次数,所以我们使用大O的渐进表示法。

2.2 -> 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:

  1. 在常数1取代运行时间中的所有加法常数;
  2. 在修改后的运行次数函数中,只保留最高阶项;
  3. 如果最高阶项存在且不为1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法后,Func1的时间复杂度为:

O(N^{2})
O(N^{2})

-> N = 10 F(N) = 100 -> N = 100 F(N) = 10000 -> N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

另外有些算法的时间复杂度存在最好、平均和最坏情况:

  • 最好情况:任意输入规模的最小运行次数(下界)
  • 平均情况:任意输入规模的期望运行次数
  • 最坏情况:任意输入规模的最大运行次数(上界)

例如:在一个长度为N的数组中搜索一个数据x

  • 最好情况:1次找到
  • 平均情况:N / 2次找到
  • 最坏情况:N次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中的搜索数据时间复杂度为:

O(N)
O(N)

2.3 -> 常见时间复杂度计算

实例1:

代码语言:javascript
复制
// 计算Func2的时间复杂度?
void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
		++count;

	int M = 10;
	while (M--)
		++count;

	cout << count << endl;
}

实例2:

代码语言:javascript
复制
// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; ++k)
		++count;

	for (int k = 0; k < N; ++k)
		++count;

	cout << count << endl;
}

实例3:

代码语言:javascript
复制
// 计算Func4的时间复杂度?
void Func4(int N)
{
	int count = 0;
	for (int k = 0; k < 100; ++k)
		++count;

	cout << count << endl;
}

实例4:

代码语言:javascript
复制
// 计算strchr的时间复杂度?
const char* strchr(const char* str, int character);

实例5:

代码语言:javascript
复制
// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

实例6:

代码语言:javascript
复制
// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
	assert(a);
	int begin = 0;
	int end = n - 1;

	// [begin, end]:begin和end是左闭右闭区间,因此有=号
	while (begin <= end)
	{
		int mid = begin + ((end - begin) >> 1);
		if (a[mid] < x)
			begin = mid + 1;
		else if (a[mid] > x)
			end = mid - 1;
		else
			return mid;
	}

	return -1;
}

实例7:

代码语言:javascript
复制
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
	if (0 == N)
		return 1;

	return Fac(N - 1) * N;
}

实例8:

代码语言:javascript
复制
// 计算斐波那契递归fib的时间复杂度?
long long fib(size_t N)
{
	if (N < 3)
		return 1;

	return fib(N - 1) + fib(N - 2);
}

答案及分析:

1. 实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N) 2. 实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M) 3. 实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1) 4. 实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N) 5. 实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2) 6. 实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。 7. 实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。 8. 实例8通过计算分析发现基本操作递归了2^N次,时间复杂度为O(2^N)。

3 -> 空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度。

空间复杂度不是程序占用了多少byte的空间,因为意义不大,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本与时间复杂度类似,也是使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时显式申请的额外空间来确定。

实例1:

代码语言:javascript
复制
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}

		if (exchange == 0)
			break;
	}
}

实例2:

代码语言:javascript
复制
// 计算fib的空间复杂度?
// 返回斐波那契数列的前n项
long long* fib(size_t n)
{
	if (n == 0)
		return NULL;

	long long* arr = (long long*)malloc((n + 1) * sizeof(long long));
	arr[0] = 0;
	arr[1] = 1;
	for (int i = 2; i <= n; ++i)
		arr[i] = arr[i - 1] + arr[i - 2];

	return arr;
}

实例3:

代码语言:javascript
复制
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
	if (N == 0)
		return 1;

	return Fac(N - 1) * N;
}

答案及分析:

1. 实例1使用了常数个额外空间,所以空间复杂度为 O(1) 2. 实例2动态开辟了N个空间,空间复杂度为 O(N) 3. 实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

4 -> 常见复杂度对比

一般算法的常见复杂度:

5201314

O(1)

常数阶

3n + 4

O(n)

线性阶

3n ^ 2 + 4n + 5

O(n ^ 2)

平方阶

3log(2)n + 4

O(logn)

对数阶

2n + 3nlog(2)n + 4

O(nlogn)

nlogn阶

n ^ 3 + n ^ 2 + 3n + 4

O(n ^ 3)

立方阶

2 ^ n

O(2 ^ n)

指数阶

感谢大佬们支持!

互三啦!!!

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-03-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 -> 算法效率
    • 1.1 -> 如何衡量一个算法的好坏?
      • 1.2 -> 算法的复杂度
      • 2 -> 时间复杂度
        • 2.1 -> 时间复杂度的概念
          • 2.2 -> 大O的渐进表示法
            • 2.3 -> 常见时间复杂度计算
            • 3 -> 空间复杂度
            • 4 -> 常见复杂度对比
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档