前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Transformers 4.37 中文文档(七十)

Transformers 4.37 中文文档(七十)

作者头像
ApacheCN_飞龙
发布2024-06-26 17:12:31
700
发布2024-06-26 17:12:31
举报
文章被收录于专栏:信数据得永生信数据得永生

原文:huggingface.co/docs/transformers

MobileViTV2

原文:huggingface.co/docs/transformers/v4.37.2/en/model_doc/mobilevitv2

概述

MobileViTV2 模型是由 Sachin Mehta 和 Mohammad Rastegari 在移动视觉 transformers 的可分离自我关注中提出的。

MobileViTV2 是 MobileViT 的第二个版本,通过用可分离自我关注替换 MobileViT 中的多头自我关注构建而成。

论文摘要如下:

Mobile 视觉 transformers(MobileViT)可以在几个移动视觉任务中实现最先进的性能,包括分类和检测。尽管这些模型参数较少,但与基于卷积神经网络的模型相比,延迟较高。MobileViT 中的主要效率瓶颈是 transformers 中的多头自注意力(MHA),它需要 O(k2)的时间复杂度,关于标记(或补丁)k 的数量。此外,MHA 需要昂贵的操作(例如,批次矩阵乘法)来计算自我关注,影响资源受限设备上的延迟。本文介绍了一种具有线性复杂度的可分离自我关注方法,即 O(k)。所提出方法的一个简单而有效的特点是它使用逐元素操作来计算自我关注,使其成为资源受限设备的良好选择。改进的模型 MobileViTV2 在几个移动视觉任务中处于领先地位,包括 ImageNet 对象分类和 MS-COCO 对象检测。MobileViTV2 约有三百万参数,在 ImageNet 数据集上实现了 75.6%的 top-1 准确率,比 MobileViT 高出约 1%,同时在移动设备上运行速度快 3.2 倍。

此模型由shehan97贡献。原始代码可以在这里找到。

使用提示

  • MobileViTV2 更像是 CNN 而不是 Transformer 模型。它不适用于序列数据,而是适用于图像批次。与 ViT 不同,没有嵌入。骨干模型输出特征图。
  • 可以使用 MobileViTImageProcessor 来为模型准备图像。请注意,如果您自己进行预处理,预训练检查点期望图像按 BGR 像素顺序排列(而不是 RGB)。
  • 可用的图像分类检查点是在ImageNet-1k(也称为 ILSVRC 2012,包含 130 万张图像和 1000 个类别)上预训练的。
  • 分割模型使用DeepLabV3头。可用的语义分割检查点是在PASCAL VOC上预训练的。

MobileViTV2Config

class transformers.MobileViTV2Config

<来源>

代码语言:javascript
复制
( num_channels = 3 image_size = 256 patch_size = 2 expand_ratio = 2.0 hidden_act = 'swish' conv_kernel_size = 3 output_stride = 32 classifier_dropout_prob = 0.1 initializer_range = 0.02 layer_norm_eps = 1e-05 aspp_out_channels = 512 atrous_rates = [6, 12, 18] aspp_dropout_prob = 0.1 semantic_loss_ignore_index = 255 n_attn_blocks = [2, 4, 3] base_attn_unit_dims = [128, 192, 256] width_multiplier = 1.0 ffn_multiplier = 2 attn_dropout = 0.0 ffn_dropout = 0.0 **kwargs )

参数

  • num_channels (int, optional, defaults to 3) — 输入通道数。
  • image_size (int, optional, defaults to 256) — 每个图像的大小(分辨率)。
  • patch_size (int, optional, defaults to 2) — 每个补丁的大小(分辨率)。
  • expand_ratio (float, optional, defaults to 2.0) — MobileNetv2 层的扩展因子。
  • hidden_act (str or function, optional, defaults to "swish") — Transformer 编码器和卷积层中的非线性激活函数(函数或字符串)。
  • conv_kernel_size (int, optional, defaults to 3) — MobileViTV2 层中卷积核的大小。
  • output_stride (int, optional, defaults to 32) — 输出空间分辨率与输入图像分辨率的比率。
  • classifier_dropout_prob (float, optional, defaults to 0.1) — 附加分类器的丢失比率。
  • initializer_rangefloat可选,默认为 0.02)—用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • layer_norm_epsfloat可选,默认为 1e-05)—层归一化层使用的 epsilon。
  • aspp_out_channelsint可选,默认为 512)—语义分割中 ASPP 层使用的输出通道数。
  • atrous_ratesList[int]可选,默认为[6, 12, 18])—语义分割中 ASPP 层中使用的扩张(atrous)因子。
  • aspp_dropout_probfloat可选,默认为 0.1)—语义分割中 ASPP 层的 dropout 比率。
  • semantic_loss_ignore_indexint可选,默认为 255)—语义分割模型的损失函数中被忽略的索引。
  • n_attn_blocksList[int]可选,默认为[2, 4, 3])—每个 MobileViTV2Layer 中的注意力块数量。
  • base_attn_unit_dimsList[int]可选,默认为[128, 192, 256])—每个 MobileViTV2Layer 中注意力块维度的基本乘数
  • width_multiplierfloat可选,默认为 1.0)—MobileViTV2 的宽度乘数。
  • ffn_multiplierint可选,默认为 2)— MobileViTV2 的 FFN 乘数。
  • attn_dropoutfloat可选,默认为 0.0)—注意力层中的 dropout。
  • ffn_dropoutfloat可选,默认为 0.0)—FFN 层之间的 dropout。

这是一个配置类,用于存储 MobileViTV2Model 的配置。它用于根据指定的参数实例化 MobileViTV2 模型,定义模型架构。使用默认值实例化配置将产生类似于 MobileViTV2 apple/mobilevitv2-1.0架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

代码语言:javascript
复制
>>> from transformers import MobileViTV2Config, MobileViTV2Model

>>> # Initializing a mobilevitv2-small style configuration
>>> configuration = MobileViTV2Config()

>>> # Initializing a model from the mobilevitv2-small style configuration
>>> model = MobileViTV2Model(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

MobileViTV2Model

class transformers.MobileViTV2Model

<来源>

代码语言:javascript
复制
( config: MobileViTV2Config expand_output: bool = True )

参数

  • config(MobileViTV2Config)—模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

MobileViTV2 模型裸露地输出原始隐藏状态,没有特定的头部。这个模型是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有内容。

前进

<来源>

代码语言:javascript
复制
( pixel_values: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention or tuple(torch.FloatTensor)

参数

  • pixel_values(形状为(batch_size, num_channels, height, width)torch.FloatTensor)—像素值。像素值可以使用 AutoImageProcessor 获取。有关详细信息,请参阅 MobileViTImageProcessor.call()。
  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请查看返回张量下的hidden_states
  • return_dictbool可选)- 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttentiontuple(torch.FloatTensor)

一个transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含各种元素,取决于配置(MobileViTV2Config)和输入。

  • last_hidden_state(形状为(batch_size, num_channels, height, width)torch.FloatTensor)- 模型最后一层的隐藏状态序列。
  • pooler_output(形状为(batch_size, hidden_size)torch.FloatTensor)- 在空间维度上进行池化操作后的最后一层隐藏状态。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, num_channels, height, width)torch.FloatTensor元组(如果模型具有嵌入层的输出,则为嵌入的输出+每层的输出)。 每层模型的隐藏状态以及可选的初始嵌入输出。

MobileViTV2Model 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, MobileViTV2Model
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256")
>>> model = MobileViTV2Model.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 512, 8, 8]

MobileViTV2ForImageClassification

class transformers.MobileViTV2ForImageClassification

<来源>

代码语言:javascript
复制
( config: MobileViTV2Config )

参数

  • config(MobileViTV2Config)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

MobileViTV2 模型,顶部带有一个图像分类头(在池化特征的顶部有一个线性层),例如用于 ImageNet。

该模型是 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

代码语言:javascript
复制
( pixel_values: Optional = None output_hidden_states: Optional = None labels: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.ImageClassifierOutputWithNoAttention or tuple(torch.FloatTensor)

参数

  • pixel_values(形状为(batch_size, num_channels, height, width)torch.FloatTensor)- 像素值。可以使用 AutoImageProcessor 获取像素值。有关详细信息,请参阅 MobileViTImageProcessor.call()。
  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请查看返回张量下的hidden_states
  • return_dictbool可选)- 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor,形状为(batch_size,)可选) — 用于计算图像分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失)。如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.ImageClassifierOutputWithNoAttention 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.ImageClassifierOutputWithNoAttention 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含各种元素,具体取决于配置(MobileViTV2Config)和输入。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回) — 分类(如果 config.num_labels==1 则为回归)损失。
  • logits(形状为(batch_size, config.num_labels)torch.FloatTensor) — 分类(如果 config.num_labels==1 则为回归)分数(SoftMax 之前)。
  • hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, num_channels, height, width)torch.FloatTensor元组。模型在每个阶段输出的隐藏状态(也称为特征图)。

MobileViTV2ForImageClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, MobileViTV2ForImageClassification
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256")
>>> model = MobileViTV2ForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat

MobileViTV2ForSemanticSegmentation

class transformers.MobileViTV2ForSemanticSegmentation

<来源>

代码语言:javascript
复制
( config: MobileViTV2Config )

参数

  • config(MobileViTV2Config) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

MobileViTV2 模型,顶部带有语义分割头,例如用于 Pascal VOC。

此模型是 PyTorch torch.nn.Module的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有事项。

forward

<来源>

代码语言:javascript
复制
( pixel_values: Optional = None labels: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SemanticSegmenterOutput or tuple(torch.FloatTensor)

参数

  • pixel_values(形状为(batch_size, num_channels, height, width)torch.FloatTensor) — 像素值。可以使用 AutoImageProcessor 获取像素值。有关详细信息,请参阅 MobileViTImageProcessor.call()。
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。
  • labels(形状为 (batch_size, height, width)torch.LongTensor可选)— 用于计算损失的地面实例分割地图。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SemanticSegmenterOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SemanticSegmenterOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=Falseconfig.return_dict=False)包含各种元素,取决于配置(MobileViTV2Config)和输入。

  • loss(形状为 (1,)torch.FloatTensor可选,当提供了 labels 时返回)— 分类(或回归,如果 config.num_labels==1)损失。
  • logits(形状为 (batch_size, config.num_labels, logits_height, logits_width)torch.FloatTensor)— 每个像素的分类分数。 返回的 logits 不一定与作为输入传递的 pixel_values 具有相同的大小。这是为了避免进行两次插值并在用户需要将 logits 调整为原始图像大小时丢失一些质量。您应始终检查您的 logits 形状并根据需要调整大小。
  • hidden_statestuple(torch.FloatTensor)可选,当传递了 output_hidden_states=Trueconfig.output_hidden_states=True 时返回)— 形状为 (batch_size, patch_size, hidden_size)torch.FloatTensor 元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)。 模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递了 output_attentions=Trueconfig.output_attentions=True 时返回)— 形状为 (batch_size, num_heads, patch_size, sequence_length)torch.FloatTensor 元组(每层一个)。 注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

MobileViTV2ForSemanticSegmentation 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module 实例而不是此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> import requests
>>> import torch
>>> from PIL import Image
>>> from transformers import AutoImageProcessor, MobileViTV2ForSemanticSegmentation

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> image_processor = AutoImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256")
>>> model = MobileViTV2ForSemanticSegmentation.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256")

>>> inputs = image_processor(images=image, return_tensors="pt")

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> # logits are of shape (batch_size, num_labels, height, width)
>>> logits = outputs.logits

邻域注意力变换器

原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/nat

概述

NAT 是由 Ali Hassani、Steven Walton、Jiachen Li、Shen Li 和 Humphrey Shi 在邻域注意力变换器中提出的。

这是一个基于邻域注意力的分层视觉变换器,采用滑动窗口自注意力模式。

论文的摘要如下:

我们提出了邻域注意力(NA),这是第一个用于视觉的高效且可扩展的滑动窗口注意力机制。NA 是一个像素级的操作,将自注意力(SA)局部化到最近的相邻像素,因此与 SA 的二次复杂度相比,具有线性的时间和空间复杂度。滑动窗口模式允许 NA 的感受野增长,而无需额外的像素移位,并且保留了平移等变性,不像 Swin Transformer 的窗口自注意力(WSA)。我们开发了 NATTEN(邻域注意力扩展),这是一个带有高效 C++和 CUDA 内核的 Python 包,允许 NA 比 Swin 的 WSA 快 40%,同时使用的内存少 25%。我们进一步提出了基于 NA 的新分层变换器设计 Neighborhood Attention Transformer(NAT),它提升了图像分类和下游视觉性能。NAT 的实验结果具有竞争力;NAT-Tiny 在 ImageNet 上达到了 83.2%的 top-1 准确率,在 MS-COCO 上达到了 51.4%的 mAP,在 ADE20K 上达到了 48.4%的 mIoU,比具有相似大小的 Swin 模型分别提高了 1.9%的 ImageNet 准确率、1.0%的 COCO mAP 和 2.6%的 ADE20K mIoU。

邻域注意力与其他注意力模式的比较。摘自原始论文

这个模型是由Ali Hassani贡献的。原始代码可以在这里找到。

使用提示

  • 可以使用 AutoImageProcessor API 来为模型准备图像。
  • NAT 可以用作骨干。当output_hidden_states = True时,它将输出hidden_statesreshaped_hidden_statesreshaped_hidden_states的形状为(batch, num_channels, height, width),而不是(batch_size, height, width, num_channels)

注意:

  • NAT 依赖于NATTEN对邻域注意力的实现。您可以通过参考shi-labs.com/natten安装 Linux 的预构建轮毂,或者通过运行pip install natten在您的系统上构建。请注意,后者可能需要一些时间来编译。NATTEN 目前不支持 Windows 设备。
  • 目前仅支持 4 的补丁大小。

资源

一系列官方 Hugging Face 和社区(由🌎表示)资源,可帮助您开始使用 NAT。

图像分类

  • NatForImageClassification 由这个示例脚本笔记本支持。
  • 另请参阅:图像分类任务指南

如果您有兴趣提交资源以包含在此处,请随时打开一个 Pull Request,我们将对其进行审查!资源应该展示一些新东西,而不是重复现有资源。

NatConfig

class transformers.NatConfig

<来源>

代码语言:javascript
复制
( patch_size = 4 num_channels = 3 embed_dim = 64 depths = [3, 4, 6, 5] num_heads = [2, 4, 8, 16] kernel_size = 7 mlp_ratio = 3.0 qkv_bias = True hidden_dropout_prob = 0.0 attention_probs_dropout_prob = 0.0 drop_path_rate = 0.1 hidden_act = 'gelu' initializer_range = 0.02 layer_norm_eps = 1e-05 layer_scale_init_value = 0.0 out_features = None out_indices = None **kwargs )

参数

  • patch_size (int, optional, defaults to 4) — 每个补丁的大小(分辨率)。注意:目前仅支持大小为 4 的补丁。
  • num_channels (int, optional, defaults to 3) — 输入通道数。
  • embed_dim (int, optional, defaults to 64) — 补丁嵌入的维度。
  • depths (List[int], optional, defaults to [3, 4, 6, 5]) — 编码器每个级别中的层数。
  • num_heads (List[int], optional, defaults to [2, 4, 8, 16]) — Transformer 编码器每层中的注意力头数。
  • kernel_size (int, optional, defaults to 7) — 邻域注意力核大小。
  • mlp_ratio (float, optional, defaults to 3.0) — MLP 隐藏维度与嵌入维度的比率。
  • qkv_bias (bool, optional, defaults to True) — 是否应向查询、键和值添加可学习偏置。
  • hidden_dropout_prob (float, optional, defaults to 0.0) — 嵌入和编码器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_prob (float, optional, defaults to 0.0) — 注意力概率的 dropout 比率。
  • drop_path_rate (float, optional, defaults to 0.1) — 随机深度率。
  • hidden_act (str or function, optional, defaults to "gelu") — 编码器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu""relu""selu""gelu_new"
  • initializer_range (float, optional, defaults to 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • layer_norm_eps (float, optional, defaults to 1e-05) — 层归一化层使用的 epsilon。
  • layer_scale_init_value (float, optional, defaults to 0.0) — 层缩放的初始值。如果<=0,则禁用。
  • out_features (List[str], optional) — 如果用作主干,要输出的特征列表。可以是"stem""stage1""stage2"等(取决于模型有多少阶段)。如果未设置且设置了out_indices,将默认为相应的阶段。如果未设置且未设置out_indices,将默认为最后一个阶段。必须按照stage_names属性中定义的顺序。
  • out_indices (List[int], optional) — 如果用作主干,要输出的特征的索引列表。可以是 0、1、2 等(取决于模型有多少阶段)。如果未设置且设置了out_features,将默认为相应的阶段。如果未设置且未设置out_features,将默认为最后一个阶段。必须按照stage_names属性中定义的顺序。

这是一个配置类,用于存储 NatModel 的配置。根据指定的参数实例化一个 Nat 模型,定义模型架构。使用默认值实例化配置将产生类似于 Nat shi-labs/nat-mini-in1k-224架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

代码语言:javascript
复制
>>> from transformers import NatConfig, NatModel

>>> # Initializing a Nat shi-labs/nat-mini-in1k-224 style configuration
>>> configuration = NatConfig()

>>> # Initializing a model (with random weights) from the shi-labs/nat-mini-in1k-224 style configuration
>>> model = NatModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

NatModel

class transformers.NatModel

< source >

代码语言:javascript
复制
( config add_pooling_layer = True )

参数

  • config (NatConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的 Nat 模型变压器输出原始隐藏状态,没有特定的头部。这个模型是 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有信息。

forward

< source >

代码语言:javascript
复制
( pixel_values: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.models.nat.modeling_nat.NatModelOutput or tuple(torch.FloatTensor)

参数

  • pixel_values (torch.FloatTensor,形状为 (batch_size, num_channels, height, width)) — 像素值。像素值可以使用 AutoImageProcessor 获取。有关详细信息,请参阅 ViTImageProcessor.call()。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通元组。

返回

transformers.models.nat.modeling_nat.NatModelOutputtuple(torch.FloatTensor)

一个 transformers.models.nat.modeling_nat.NatModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包括根据配置(NatConfig)和输入的不同元素。

  • last_hidden_state (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。
  • pooler_output (torch.FloatTensor,形状为 (batch_size, hidden_size)可选,当传递 add_pooling_layer=True 时返回) — 最后一层隐藏状态的平均池化。
  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组(一个用于嵌入的输出 + 一个用于每个阶段的输出)。 模型在每个层的输出处的隐藏状态以及初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每个阶段一个)。 注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
  • reshaped_hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, hidden_size, height, width)torch.FloatTensor 元组(一个用于嵌入的输出 + 一个用于每个阶段的输出)。 模型在每个层的输出处的隐藏状态以及重塑以包括空间维度的初始嵌入输出。

NatModel 的前向方法,覆盖了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, NatModel
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224")
>>> model = NatModel.from_pretrained("shi-labs/nat-mini-in1k-224")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 7, 7, 512]

NatForImageClassification

class transformers.NatForImageClassification

<来源>

代码语言:javascript
复制
( config )

参数

  • config(NatConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部带有图像分类头部的 Nat 模型变换器(在[CLS] 标记的最终隐藏状态之上的线性层),例如用于 ImageNet。

这个模型是 PyTorch 的torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有信息。

forward

<来源>

代码语言:javascript
复制
( pixel_values: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.models.nat.modeling_nat.NatImageClassifierOutput or tuple(torch.FloatTensor)

参数

  • pixel_values(形状为(batch_size, num_channels, height, width)torch.FloatTensor)— 像素值。可以使用 AutoImageProcessor 获取像素值。有关详细信息,请参见 ViTImageProcessor.call()。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels(形状为(batch_size,)torch.LongTensor可选)— 用于计算图像分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.models.nat.modeling_nat.NatImageClassifierOutputtuple(torch.FloatTensor)

一个transformers.models.nat.modeling_nat.NatImageClassifierOutput或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含各种元素,具体取决于配置(NatConfig)和输入。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)— 分类(如果config.num_labels==1则为回归)损失。
  • logits(形状为(batch_size, config.num_labels)torch.FloatTensor)— 分类(如果config.num_labels==1则为回归)得分(SoftMax 之前)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出 + 一个用于每个阶段的输出)。 模型在每个层的输出处的隐藏状态以及初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), 可选的, 当传递output_attentions=True或当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每个阶段一个)。 注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
  • reshaped_hidden_states (tuple(torch.FloatTensor), 可选的, 当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, hidden_size, height, width)torch.FloatTensor元组(一个用于嵌入的输出 + 一个用于每个阶段的输出)。 模型在每一层输出的隐藏状态,加上重新塑造以包括空间维度的初始嵌入输出。

NatForImageClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在此之后调用Module实例,而不是这个函数,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, NatForImageClassification
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224")
>>> model = NatForImageClassification.from_pretrained("shi-labs/nat-mini-in1k-224")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
tiger cat

PoolFormer

原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/poolformer

概述

PoolFormer 模型是由 Sea AI Labs 在MetaFormer is Actually What You Need for Vision中提出的。该工作的目标不是设计复杂的令牌混合器来实现 SOTA 性能,而是展示变压器模型的能力主要源自通用架构 MetaFormer。

论文摘要如下:

变压器在计算机视觉任务中展现出巨大潜力。人们普遍认为它们基于注意力的令牌混合器模块对其能力做出了最大贡献。然而,最近的研究表明,变压器中基于注意力的模块可以被空间 MLP 替代,结果模型仍然表现出色。基于这一观察,我们假设变压器的通用架构,而不是特定的令牌混合器模块,对模型的性能更为重要。为了验证这一点,我们故意将变压器中的注意力模块替换为一个非常简单的空间池化运算符,仅进行最基本的令牌混合。令人惊讶的是,我们观察到衍生模型 PoolFormer 在多个计算机视觉任务上取得了竞争性能。例如,在 ImageNet-1K 上,PoolFormer 实现了 82.1%的 top-1 准确率,超过了经过良好调整的视觉变压器/类似 MLP 基线 DeiT-B/ResMLP-B24 的 0.3%/1.1%准确率,参数减少了 35%/52%,MACs 减少了 48%/60%。PoolFormer 的有效性验证了我们的假设,并促使我们提出“MetaFormer”概念,这是从变压器中抽象出来的通用架构,而不指定令牌混合器。基于广泛的实验,我们认为 MetaFormer 是实现最近变压器和类似 MLP 模型在视觉任务上取得优越结果的关键因素。这项工作呼吁未来更多的研究致力于改进 MetaFormer,而不是专注于令牌混合器模块。此外,我们提出的 PoolFormer 可以作为未来 MetaFormer 架构设计的起点基线。

下图展示了 PoolFormer 的架构。摘自原始论文

此模型由heytanay贡献。原始代码可以在这里找到。

使用提示

  • PoolFormer 具有分层架构,其中存在一个简单的平均池化层,而不是注意力。模型的所有检查点都可以在hub上找到。
  • 可以使用 PoolFormerImageProcessor 来为模型准备图像。
  • 与大多数模型一样,PoolFormer 有不同的大小,详情可以在下表中找到。

模型变体

深度

隐藏大小

参数(百万)

ImageNet-1k Top 1

s12

[2, 2, 6, 2]

[64, 128, 320, 512]

12

77.2

s24

[4, 4, 12, 4]

[64, 128, 320, 512]

21

80.3

s36

[6, 6, 18, 6]

[64, 128, 320, 512]

31

81.4

m36

[6, 6, 18, 6]

[96, 192, 384, 768]

56

82.1

m48

[8, 8, 24, 8]

[96, 192, 384, 768]

73

82.5

资源

以下是官方 Hugging Face 和社区资源(由🌎表示),可帮助您开始使用 PoolFormer。

图像分类

  • PoolFormerForImageClassification 由这个示例脚本笔记本支持。
  • 另请参阅:图像分类任务指南

如果您有兴趣提交资源以包含在此处,请随时打开一个 Pull Request,我们将对其进行审查!资源应该展示一些新的东西,而不是重复现有资源。

PoolFormerConfig

class transformers.PoolFormerConfig

<来源>

代码语言:javascript
复制
( num_channels = 3 patch_size = 16 stride = 16 pool_size = 3 mlp_ratio = 4.0 depths = [2, 2, 6, 2] hidden_sizes = [64, 128, 320, 512] patch_sizes = [7, 3, 3, 3] strides = [4, 2, 2, 2] padding = [2, 1, 1, 1] num_encoder_blocks = 4 drop_path_rate = 0.0 hidden_act = 'gelu' use_layer_scale = True layer_scale_init_value = 1e-05 initializer_range = 0.02 **kwargs )

参数

  • num_channels (int, 可选, 默认为 3) — 输入图像中的通道数。
  • patch_size (int, 可选, 默认为 16) — 输入补丁的大小。
  • stride (int, 可选, 默认为 16) — 输入补丁的步幅。
  • pool_size (int, 可选, 默认为 3) — 池化窗口的大小。
  • mlp_ratio (float, 可选, 默认为 4.0) — MLP 输出通道数与输入通道数的比率。
  • depths (list, 可选, 默认为[2, 2, 6, 2]) — 每个编码器块的深度。
  • hidden_sizes (list, 可选, 默认为[64, 128, 320, 512]) — 每个编码器块的隐藏大小。
  • patch_sizes (list, 可选, 默认为[7, 3, 3, 3]) — 每个编码器块的输入补丁的大小。
  • strides (list, 可选, 默认为[4, 2, 2, 2]) — 每个编码器块的输入补丁的步幅。
  • padding (list, 可选, 默认为[2, 1, 1, 1]) — 每个编码器块的输入补丁的填充。
  • num_encoder_blocks (int, 可选, 默认为 4) — 编码器块的数量。
  • drop_path_rate (float, 可选, 默认为 0.0) — 丢弃层的丢弃率。
  • hidden_act (str, 可选, 默认为"gelu") — 隐藏层的激活函数。
  • use_layer_scale (bool, 可选, 默认为True) — 是否使用层比例。
  • layer_scale_init_value (float, 可选, 默认为 1e-05) — 层比例的初始值。
  • initializer_range (float, 可选, 默认为 0.02) — 权重的初始化范围。

这是用于存储 PoolFormerModel 配置的类。根据指定的参数实例化一个 PoolFormer 模型,定义模型架构。使用默认值实例化配置将产生类似于 PoolFormer sail/poolformer_s12架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

代码语言:javascript
复制
>>> from transformers import PoolFormerConfig, PoolFormerModel

>>> # Initializing a PoolFormer sail/poolformer_s12 style configuration
>>> configuration = PoolFormerConfig()

>>> # Initializing a model (with random weights) from the sail/poolformer_s12 style configuration
>>> model = PoolFormerModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

PoolFormerFeatureExtractor

class transformers.PoolFormerFeatureExtractor

<来源>

代码语言:javascript
复制
( *args **kwargs )
__call__

<来源>

代码语言:javascript
复制
( images **kwargs )

预处理一张图片或一批图片。

PoolFormerImageProcessor

class transformers.PoolFormerImageProcessor

<来源>

代码语言:javascript
复制
( do_resize: bool = True size: Dict = None crop_pct: int = 0.9 resample: Resampling = <Resampling.BICUBIC: 3> do_center_crop: bool = True crop_size: Dict = None rescale_factor: Union = 0.00392156862745098 do_rescale: bool = True do_normalize: bool = True image_mean: Union = None image_std: Union = None **kwargs )

参数

  • do_resize (bool可选,默认为 True) — 是否将图像的(高度,宽度)尺寸调整为指定的 size。可以被 preprocess 方法中的 do_resize 覆盖。
  • size (Dict[str, int] 可选,默认为 {"shortest_edge" -- 224}):调整大小后的图像大小。可以被 preprocess 方法中的 size 覆盖。如果未设置 crop_pct:
    • size 为 {"height": h, "width": w}:将图像调整大小为 (h, w)
    • size 为 {"shortest_edge": s}:将图像的最短边调整大小为 s,同时保持纵横比。

    如果设置了 crop_pct:

    • size 为 {"height": h, "width": w}:将图像调整大小为 (int(floor(h/crop_pct)), int(floor(w/crop_pct)))
    • size 为 {"height": c, "width": c}:将图像的最短边调整大小为 int(floor(c/crop_pct),同时保持纵横比。
    • size 为 {"shortest_edge": c}:将图像的最短边调整大小为 int(floor(c/crop_pct),同时保持纵横比。
  • crop_pct (float可选,默认为 0.9) — 从中心裁剪图像的百分比。可以被 preprocess 方法中的 crop_pct 覆盖。
  • resample (PILImageResampling可选,默认为 Resampling.BICUBIC) — 如果调整图像大小,则要使用的重采样滤波器。可以被 preprocess 方法中的 resample 覆盖。
  • do_center_crop (bool可选,默认为 True) — 是否对图像进行中心裁剪。如果输入尺寸沿任一边小于 crop_size,则图像将填充为 0,然后进行中心裁剪。可以被 preprocess 方法中的 do_center_crop 覆盖。
  • crop_size (Dict[str, int]可选,默认为 {"height" -- 224, "width": 224}):应用中心裁剪后的图像大小。仅在 do_center_crop 设置为 True 时有效。可以被 preprocess 方法中的 crop_size 参数覆盖。
  • rescale_factor (intfloat可选,默认为 1/255) — 如果重新缩放图像,则使用的比例因子。可以被 preprocess 方法中的 rescale_factor 参数覆盖。
  • do_rescale (bool可选,默认为 True) — 是否按指定比例 rescale_factor 重新缩放图像。可以被 preprocess 方法中的 do_rescale 参数覆盖。
  • do_normalize (bool可选,默认为 True) — 控制是否对图像进行标准化。可以被 preprocess 方法中的 do_normalize 参数覆盖。
  • image_mean (floatList[float]可选,默认为 IMAGENET_STANDARD_MEAN) — 如果对图像进行标准化,则使用的均值。这是一个浮点数或与图像通道数相同长度的浮点数列表。可以被 preprocess 方法中的 image_mean 参数覆盖。
  • image_std (floatList[float]可选,默认为 IMAGENET_STANDARD_STD) — 如果对图像进行标准化,则使用的标准差。这是一个浮点数或与图像通道数相同长度的浮点数列表。可以被 preprocess 方法中的 image_std 参数覆盖。

构建一个 PoolFormer 图像处理器。

preprocess

< source >

代码语言:javascript
复制
( images: Union do_resize: bool = None size: Dict = None crop_pct: int = None resample: Resampling = None do_center_crop: bool = None crop_size: Dict = None do_rescale: bool = None rescale_factor: float = None do_normalize: bool = None image_mean: Union = None image_std: Union = None return_tensors: Union = None data_format: ChannelDimension = <ChannelDimension.FIRST: 'channels_first'> input_data_format: Union = None **kwargs )

参数

  • images (ImageInput) — 要预处理的图像。期望传入像素值范围为 0 到 255 的单个图像或图像批次。如果传入像素值在 0 到 1 之间的图像,请设置 do_rescale=False
  • do_resize (bool可选,默认为 self.do_resize) — 是否调整图像大小。
  • size (Dict[str, int]可选,默认为 self.size) — 调整大小后的图像大小。
  • crop_pct (float可选,默认为 self.crop_pct) — 要裁剪的图像百分比。仅在 do_resize 设置为 True 时有效。
  • resample (int可选,默认为 self.resample) — 如果调整图像大小,则要使用的重采样滤波器。这可以是枚举 PILImageResampling 中的一个。仅当 do_resize 设置为 True 时才有效。
  • do_center_crop (bool可选,默认为 self.do_center_crop) — 是否对图像进行中心裁剪。
  • crop_size (Dict[str, int]可选,默认为 self.crop_size) — 应用中心裁剪后的图像大小。
  • do_rescale (bool可选,默认为 self.do_rescale) — 是否将图像值重新缩放在 [0 - 1] 之间。
  • rescale_factor (float可选,默认为 self.rescale_factor) — 如果 do_rescale 设置为 True,则用于重新缩放图像的重新缩放因子。
  • do_normalize (bool可选,默认为 self.do_normalize) — 是否对图像进行归一化。
  • image_mean (floatList[float]可选,默认为 self.image_mean) — 图像均值。
  • image_std (floatList[float]可选,默认为 self.image_std) — 图像标准差。
  • return_tensors (strTensorType可选) — 要返回的张量类型。可以是以下之一:
    • 未设置:返回一个 np.ndarray 列表。
    • TensorType.TENSORFLOW'tf':返回一个类型为 tf.Tensor 的批次。
    • TensorType.PYTORCH'pt':返回一个类型为 torch.Tensor 的批次。
    • TensorType.NUMPY'np':返回一个类型为 np.ndarray 的批次。
    • TensorType.JAX'jax':返回一个类型为 jax.numpy.ndarray 的批次。
  • data_format (ChannelDimensionstr可选,默认为 ChannelDimension.FIRST) — 输出图像的通道维度格式。可以是以下之一:
    • ChannelDimension.FIRST:图像以 (num_channels, height, width) 格式。
    • ChannelDimension.LAST:图像以 (height, width, num_channels) 格式。
  • input_data_format (ChannelDimensionstr可选) — 输入图像的通道维度格式。如果未设置,则从输入图像中推断通道维度格式。可以是以下之一:
    • "channels_first"ChannelDimension.FIRST:图像以 (num_channels, height, width) 格式。
    • "channels_last"ChannelDimension.LAST:图像以 (height, width, num_channels) 格式。
    • "none"ChannelDimension.NONE:图像以 (height, width) 格式。

预处理图像或一批图像。

PoolFormerModel

class transformers.PoolFormerModel

<来源>

代码语言:javascript
复制
( config )

参数

  • config (PoolFormerConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的 PoolFormer 模型变压器,输出原始隐藏状态,没有特定的头部。此模型是 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

代码语言:javascript
复制
( pixel_values: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithNoAttention or tuple(torch.FloatTensor)

参数

  • pixel_values (torch.FloatTensor,形状为 (batch_size, num_channels, height, width)) — 像素值。可以使用 AutoImageProcessor 获取像素值。有关详细信息,请参阅 PoolFormerImageProcessor.call()。

返回

transformers.modeling_outputs.BaseModelOutputWithNoAttentiontuple(torch.FloatTensor)

一个transformers.modeling_outputs.BaseModelOutputWithNoAttention或者一个torch.FloatTensor的元组(如果传递了return_dict=False或者当config.return_dict=False时)包括不同的元素,取决于配置(PoolFormerConfig)和输入。

  • last_hidden_state(形状为(batch_size, num_channels, height, width)torch.FloatTensor)— 模型最后一层的隐藏状态序列输出。
  • hidden_statestuple(torch.FloatTensor)可选,当传递了output_hidden_states=True或者当config.output_hidden_states=True时返回)— 形状为(batch_size, num_channels, height, width)torch.FloatTensor元组(如果模型有嵌入层,则一个用于嵌入输出,+ 一个用于每一层的输出)。 模型在每一层输出的隐藏状态以及可选的初始嵌入输出。

PoolFormerModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, PoolFormerModel
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("sail/poolformer_s12")
>>> model = PoolFormerModel.from_pretrained("sail/poolformer_s12")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 512, 7, 7]

PoolFormerForImageClassification

class transformers.PoolFormerForImageClassification

<来源>

代码语言:javascript
复制
( config )

参数

  • config(PoolFormerConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

具有图像分类头部的 PoolFormer 模型变压器

这个模型是 PyTorch torch.nn.Module的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

代码语言:javascript
复制
( pixel_values: Optional = None labels: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.ImageClassifierOutputWithNoAttention or tuple(torch.FloatTensor)

参数

  • pixel_values(形状为(batch_size, num_channels, height, width)torch.FloatTensor)— 像素值。可以使用 AutoImageProcessor 获取像素值。有关详细信息,请参阅 PoolFormerImageProcessor.call()。
  • labels(形状为(batch_size,)torch.LongTensor可选)— 用于计算图像分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.ImageClassifierOutputWithNoAttention 或者tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.ImageClassifierOutputWithNoAttention 或者一个torch.FloatTensor的元组(如果传递了return_dict=False或者当config.return_dict=False时)包括不同的元素,取决于配置(PoolFormerConfig)和输入。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回) — 分类(如果 config.num_labels==1 则为回归)损失。
  • logits(形状为(batch_size, config.num_labels)torch.FloatTensor) — 分类(如果 config.num_labels==1 则为回归)得分(SoftMax 之前)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, num_channels, height, width)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每个阶段的输出)。模型在每个阶段输出的隐藏状态(也称为特征图)。

PoolFormerForImageClassification 的前向方法覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, PoolFormerForImageClassification
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("sail/poolformer_s12")
>>> model = PoolFormerForImageClassification.from_pretrained("sail/poolformer_s12")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat

金字塔视觉变换器(PVT)

原文链接:huggingface.co/docs/transformers/v4.37.2/en/model_doc/pvt

概述

PVT 模型由 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao 在金字塔视觉变换器:一种用于密集预测的多功能骨干网络而无需卷积中提出。PVT 是一种利用金字塔结构的视觉变换器,使其成为密集预测任务的有效骨干。具体来说,它允许使用更精细的输入(每个补丁 4 x 4 像素),同时随着深度的增加缩短变换器的序列长度,从而降低计算成本。此外,还使用了空间缩减注意力(SRA)层,进一步降低学习高分辨率特征时的资源消耗。

论文摘要如下:

尽管卷积神经网络(CNNs)在计算机视觉领域取得了巨大成功,但本研究探讨了一种简单的、无需卷积的骨干网络,适用于许多密集预测任务。与最近提出的专为图像分类而设计的 Vision Transformer(ViT)不同,我们引入了金字塔视觉变换器(PVT),它克服了将 Transformer 移植到各种密集预测任务的困难。与通常产生低分辨率输出并导致高计算和内存成本的 ViT 不同,PVT 不仅可以在图像的密集分区上进行训练以实现高输出分辨率,这对于密集预测非常重要,而且还使用逐渐缩小的金字塔来减少大特征图的计算量。PVT 继承了 CNN 和 Transformer 的优点,使其成为各种视觉任务的统一骨干,无需卷积,可以直接替代 CNN 骨干。我们通过大量实验证实了 PVT 的有效性,显示它提升了许多下游任务的性能,包括目标检测、实例和语义分割。例如,具有相同参数数量的 PVT+RetinaNet 在 COCO 数据集上实现了 40.4 AP,超过了 ResNet50+RetinNet(36.3 AP)4.1 个绝对 AP(见图 2)。我们希望 PVT 可以作为像素级预测的替代和有用的骨干,并促进未来的研究。

此模型由 Xrenya)贡献。原始代码可在此处找到。

  • PVTv1 在 ImageNet-1K 上

模型变体

大小

准确率@1

参数(百万)

PVT-Tiny

224

75.1

13.2

PVT-Small

224

79.8

24.5

PVT-Medium

224

81.2

44.2

PVT-Large

224

81.7

61.4

PvtConfig

class transformers.PvtConfig

< source >

代码语言:javascript
复制
( image_size: int = 224 num_channels: int = 3 num_encoder_blocks: int = 4 depths: List = [2, 2, 2, 2] sequence_reduction_ratios: List = [8, 4, 2, 1] hidden_sizes: List = [64, 128, 320, 512] patch_sizes: List = [4, 2, 2, 2] strides: List = [4, 2, 2, 2] num_attention_heads: List = [1, 2, 5, 8] mlp_ratios: List = [8, 8, 4, 4] hidden_act: Mapping = 'gelu' hidden_dropout_prob: float = 0.0 attention_probs_dropout_prob: float = 0.0 initializer_range: float = 0.02 drop_path_rate: float = 0.0 layer_norm_eps: float = 1e-06 qkv_bias: bool = True num_labels: int = 1000 **kwargs )

参数

  • image_size (int, optional, defaults to 224) — 输入图像大小
  • num_channels (int, optional, defaults to 3) — 输入通道数。
  • num_encoder_blocks (int, optional, defaults to 4) — 编码器块的数量(即 Mix Transformer 编码器中的阶段数)。
  • depths (List[int], optional, defaults to [2, 2, 2, 2]) — 每个编码器块中的层数。
  • sequence_reduction_ratios (List[int], optional, defaults to [8, 4, 2, 1]) — 每个编码器块中的序列缩减比率。
  • hidden_sizes (List[int], optional, defaults to [64, 128, 320, 512]) — 每个编码器块的维度。
  • patch_sizes (List[int], optional, defaults to [4, 2, 2, 2]) — 每个编码器块之前的补丁大小。
  • strides (List[int], optional, defaults to [4, 2, 2, 2]) — 每个编码器块之前的步幅。
  • num_attention_headsList[int]可选,默认为[1, 2, 5, 8])— 每个 Transformer 编码器块中每个注意力层的注意力头数。
  • mlp_ratiosList[int]可选,默认为[8, 8, 4, 4])— 与 Transformer 编码器块中输入层大小相比的隐藏层大小比例。
  • hidden_actstrfunction可选,默认为"gelu")— 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu""relu""selu""gelu_new"
  • hidden_dropout_probfloat可选,默认为 0.0)— 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_probfloat可选,默认为 0.0)— 注意力概率的 dropout 比率。
  • initializer_rangefloat可选,默认为 0.02)— 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • drop_path_ratefloat可选,默认为 0.0)— 用于 Transformer 编码器块中随机深度的 dropout 概率。
  • layer_norm_epsfloat可选,默认为 1e-06)— 层归一化层使用的 epsilon。
  • qkv_biasbool可选,默认为True)— 是否应向查询、键和值添加可学习偏置。
  • num_labelsint可选,默认为 1000)— 类别数。

这是一个配置类,用于存储 PvtModel 的配置。根据指定的参数实例化 Pvt 模型,定义模型架构。使用默认值实例化配置将产生类似于 Pvt Xrenya/pvt-tiny-224架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

代码语言:javascript
复制
>>> from transformers import PvtModel, PvtConfig

>>> # Initializing a PVT Xrenya/pvt-tiny-224 style configuration
>>> configuration = PvtConfig()

>>> # Initializing a model from the Xrenya/pvt-tiny-224 style configuration
>>> model = PvtModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

PvtImageProcessor

class transformers.PvtImageProcessor

<来源>

代码语言:javascript
复制
( do_resize: bool = True size: Optional = None resample: Resampling = <Resampling.BILINEAR: 2> do_rescale: bool = True rescale_factor: Union = 0.00392156862745098 do_normalize: bool = True image_mean: Union = None image_std: Union = None **kwargs )

参数

  • do_resizebool可选,默认为True)— 是否将图像的(高度,宽度)尺寸调整为指定的(size["height"]size["width"])。可以通过preprocess方法中的do_resize参数覆盖。
  • sizedict可选,默认为{"height" -- 224, "width": 224}):调整大小后的输出图像大小。可以通过preprocess方法中的size参数覆盖。
  • resamplePILImageResampling可选,默认为Resampling.BILINEAR)— 如果调整图像大小,则要使用的重采样滤波器。可以通过preprocess方法中的resample参数覆盖。
  • do_rescalebool可选,默认为True)— 是否按指定比例rescale_factor重新缩放图像。可以通过preprocess方法中的do_rescale参数覆盖。
  • rescale_factorintfloat可选,默认为1/255)— 如果重新缩放图像,则要使用的比例因子。可以通过preprocess方法中的rescale_factor参数覆盖。
  • do_normalizebool可选,默认为True)— 是否对图像进行归一化。可以通过preprocess方法中的do_normalize参数覆盖。
  • image_meanfloatList[float]可选,默认为IMAGENET_DEFAULT_MEAN)— 如果对图像进行归一化,则使用的均值。这是一个浮点数或与图像通道数相同长度的浮点数列表。可以通过preprocess方法中的image_mean参数覆盖。
  • image_std (floatList[float], 可选, 默认为 IMAGENET_DEFAULT_STD) — 如果归一化图像,则使用的标准差。这是一个浮点数或与图像中通道数相同长度的浮点数列表。可以被 preprocess 方法中的 image_std 参数覆盖。

构造一个 PVT 图像处理器。

预处理

< source >

代码语言:javascript
复制
( images: Union do_resize: Optional = None size: Dict = None resample: Resampling = None do_rescale: Optional = None rescale_factor: Optional = None do_normalize: Optional = None image_mean: Union = None image_std: Union = None return_tensors: Union = None data_format: Union = <ChannelDimension.FIRST: 'channels_first'> input_data_format: Union = None **kwargs )

参数

  • images (ImageInput) — 要预处理的图像。期望单个图像或批量图像,像素值范围为 0 到 255。如果传入像素值在 0 到 1 之间的图像,请设置 do_rescale=False
  • do_resize (bool, 可选, 默认为 self.do_resize) — 是否调整图像大小。
  • size (Dict[str, int], 可选, 默认为 self.size) — 以 {"height": h, "width": w} 格式指定调整大小后输出图像的大小的字典。
  • resample (PILImageResampling 过滤器, 可选, 默认为 self.resample) — 如果调整图像大小,则使用的 PILImageResampling 过滤器,例如 PILImageResampling.BILINEAR。仅在 do_resize 设置为 True 时有效。
  • do_rescale (bool, 可选, 默认为 self.do_rescale) — 是否将图像值重新缩放在 [0 - 1] 之间。
  • rescale_factor (float, 可选, 默认为 self.rescale_factor) — 如果 do_rescale 设置为 True,则用于重新缩放图像的重新缩放因子。
  • do_normalize (bool, 可选, 默认为 self.do_normalize) — 是否对图像进行归一化。
  • image_mean (floatList[float], 可选, 默认为 self.image_mean) — 如果 do_normalize 设置为 True,则使用的图像均值。
  • image_std (floatList[float], 可选, 默认为 self.image_std) — 如果 do_normalize 设置为 True,则使用的图像标准差。
  • return_tensors (strTensorType, 可选) — 要返回的张量类型。可以是以下之一:
    • 未设置: 返回一个 np.ndarray 列表。
    • TensorType.TENSORFLOW'tf': 返回类型为 tf.Tensor 的批处理。
    • TensorType.PYTORCH'pt': 返回类型为 torch.Tensor 的批处理。
    • TensorType.NUMPY'np': 返回类型为 np.ndarray 的批处理。
    • TensorType.JAX'jax': 返回类型为 jax.numpy.ndarray 的批处理。
  • data_format (ChannelDimensionstr, 可选, 默认为 ChannelDimension.FIRST) — 输出图像的通道维度格式。可以是以下之一:
    • "channels_first"ChannelDimension.FIRST: 图像以 (通道数, 高度, 宽度) 格式。
    • "channels_last"ChannelDimension.LAST: 图像以 (高度, 宽度, 通道数) 格式。
    • 未设置: 使用输入图像的通道维度格式。
  • input_data_format (ChannelDimensionstr, 可选) — 输入图像的通道维度格式。如果未设置,则从输入图像中推断通道维度格式。可以是以下之一:
    • "channels_first"ChannelDimension.FIRST: 图像以 (通道数, 高度, 宽度) 格式。
    • "channels_last"ChannelDimension.LAST: 图像以 (高度, 宽度, 通道数) 格式。
    • "none"ChannelDimension.NONE: 图像以 (高度, 宽度) 格式。

预处理一个图像或一批图像。

PvtForImageClassification

class transformers.PvtForImageClassification

< source >

代码语言:javascript
复制
( config: PvtConfig )

参数

  • config (~PvtConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

Pvt 模型变压器,顶部带有图像分类头(在 [CLS] 令牌的最终隐藏状态之上的线性层),例如用于 ImageNet。

此模型是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< source >

代码语言:javascript
复制
( pixel_values: Optional labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.ImageClassifierOutput or tuple(torch.FloatTensor)

参数

  • pixel_values(形状为(batch_size, num_channels, height, width)torch.FloatTensor)— 像素值。像素值可以使用 AutoImageProcessor 获取。有关详细信息,请参阅 PvtImageProcessor.call()。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。
  • labels(形状为(batch_size,)torch.LongTensor可选)— 用于计算图像分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.ImageClassifierOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.ImageClassifierOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含各种元素,具体取决于配置(PvtConfig)和输入。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)— 分类(或回归,如果config.num_labels==1)损失。
  • logits(形状为(batch_size, config.num_labels)torch.FloatTensor)— 分类(或回归,如果config.num_labels==1)分数(SoftMax 之前)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组。模型在每个阶段的输出的隐藏状态(也称为特征图)。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, patch_size, sequence_length)torch.FloatTensor元组。 在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

PvtForImageClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, PvtForImageClassification
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("Zetatech/pvt-tiny-224")
>>> model = PvtForImageClassification.from_pretrained("Zetatech/pvt-tiny-224")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat

PvtModel

class transformers.PvtModel

< source >

代码语言:javascript
复制
( config: PvtConfig )

参数

  • config(~PvtConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

裸 Pvt 编码器输出原始隐藏状态,没有特定的头部。这个模型是 PyTorch 的torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有信息。

forward

<来源>

代码语言:javascript
复制
( pixel_values: FloatTensor output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutput or tuple(torch.FloatTensor)

参数

  • pixel_values(形状为(batch_size, num_channels, height, width)torch.FloatTensor)- 像素值。像素值可以使用 AutoImageProcessor 获取。有关详细信息,请参阅 PvtImageProcessor.call()。
  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dictbool可选)- 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_outputs.BaseModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含根据配置(PvtConfig)和输入不同元素。

  • last_hidden_state(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor)- 模型最后一层的隐藏状态序列。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入输出的一个+每层输出的一个)。 模型在每一层的输出的隐藏状态加上可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。 注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

PvtModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, PvtModel
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("Zetatech/pvt-tiny-224")
>>> model = PvtModel.from_pretrained("Zetatech/pvt-tiny-224")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 50, 512]

RegNet

原文链接:huggingface.co/docs/transformers/v4.37.2/en/model_doc/regnet

概述

RegNet 模型是由 Ilija Radosavovic、Raj Prateek Kosaraju、Ross Girshick、Kaiming He、Piotr Dollár 在设计网络设计空间中提出的。

作者设计了搜索空间来执行神经架构搜索(NAS)。他们首先从高维搜索空间开始,并通过根据当前搜索空间采样的表现最佳模型经验性地应用约束来迭代地减少搜索空间。

论文摘要如下:

在这项工作中,我们提出了一种新的网络设计范式。我们的目标是推动对网络设计的理解,并发现可以在各种设置中推广的设计原则。我们不再专注于设计单个网络实例,而是设计可以参数化网络群体的网络设计空间。整个过程类似于经典手动设计网络,但提升到设计空间级别。使用我们的方法,我们探索网络设计的结构方面,并得出一个由简单、规则网络组成的低维设计空间,我们称之为 RegNet。RegNet 参数化的核心见解令人惊讶简单:好网络的宽度和深度可以用量化的线性函数解释。我们分析了 RegNet 设计空间,并得出了与当前网络设计实践不符的有趣发现。在可比的训练设置和 flops 下,RegNet 模型在 GPU 上比流行的 EfficientNet 模型表现更好,同时速度提高了多达 5 倍。

这个模型是由Francesco贡献的。模型的 TensorFlow 版本是由sayakpaulariG23498贡献的。原始代码可以在这里找到。

来自野外自监督视觉特征预训练的巨大 10B 模型,训练了 10 亿张 Instagram 图片,可在hub上找到

资源

以下是一些官方 Hugging Face 和社区(由🌎表示)资源列表,可帮助您开始使用 RegNet。

图像分类

  • RegNetForImageClassification 由这个示例脚本笔记本支持。
  • 另请参阅:图像分类任务指南

如果您有兴趣提交资源以包含在此处,请随时提出拉取请求,我们将进行审查!资源应该理想地展示一些新内容,而不是重复现有资源。

RegNetConfig

class transformers.RegNetConfig

<来源>

代码语言:javascript
复制
( num_channels = 3 embedding_size = 32 hidden_sizes = [128, 192, 512, 1088] depths = [2, 6, 12, 2] groups_width = 64 layer_type = 'y' hidden_act = 'relu' **kwargs )

参数

  • num_channels (int, 可选, 默认为 3) — 输入通道的数量。
  • embedding_size (int, 可选, 默认为 64) — 嵌入层的维度(隐藏大小)。
  • hidden_sizes (List[int], 可选, 默认为[256, 512, 1024, 2048]) — 每个阶段的维度(隐藏大小)。
  • depths (List[int], 可选, 默认为[3, 4, 6, 3]) — 每个阶段的深度(层数)。
  • layer_type (str, optional, 默认为"y") — 要使用的层,可以是"x""y"x层是 ResNet 的 BottleNeck 层,reduction固定为1。而y层是x层,但带有 squeeze 和 excitation。请参考论文以获取这些层是如何构建的详细解释。
  • hidden_act (str, optional, 默认为"relu") — 每个块中的非线性激活函数。如果是字符串,支持"gelu""relu""selu""gelu_new"
  • downsample_in_first_stage (bool, optional, 默认为False) — 如果为True,第一阶段将使用stride为 2 对输入进行下采样。

这是配置类,用于存储 RegNetModel 的配置。根据指定的参数实例化 RegNet 模型,定义模型架构。使用默认值实例化配置将产生类似于 RegNet facebook/regnet-y-040架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

代码语言:javascript
复制
>>> from transformers import RegNetConfig, RegNetModel

>>> # Initializing a RegNet regnet-y-40 style configuration
>>> configuration = RegNetConfig()
>>> # Initializing a model from the regnet-y-40 style configuration
>>> model = RegNetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config

PytorchHide Pytorch content

RegNetModel

class transformers.RegNetModel

< source >

代码语言:javascript
复制
( config )

参数

  • config (RegNetConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

裸的 RegNet 模型输出原始特征,没有特定的头部。这个模型是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有事项。

forward

< source >

代码语言:javascript
复制
( pixel_values: Tensor output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention or tuple(torch.FloatTensor)

参数

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — 像素值。可以使用 AutoImageProcessor 获取像素值。有关详细信息,请参阅 ConvNextImageProcessor.call()。
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请查看返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttentiontuple(torch.FloatTensor)

一个transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时)包含根据配置(RegNetConfig)和输入的各种元素。

  • last_hidden_state (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — 模型最后一层的隐藏状态序列。
  • pooler_output (torch.FloatTensor,形状为(batch_size, hidden_size)) — 在空间维度上进行池化操作后的最后一层隐藏状态。
  • hidden_states (tuple(torch.FloatTensor)optional,当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, num_channels, height, width)torch.FloatTensor元组。 模型在每一层输出的隐藏状态以及可选的初始嵌入输出。

RegNetModel 的前向方法,覆盖__call__特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, RegNetModel
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040")
>>> model = RegNetModel.from_pretrained("facebook/regnet-y-040")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 1088, 7, 7]

RegNetForImageClassification

class transformers.RegNetForImageClassification

<来源>

代码语言:javascript
复制
( config )

参数

  • config(RegNetConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部带有图像分类头部的 RegNet 模型(在池化特征的顶部有一个线性层),例如用于 ImageNet。

这个模型是 PyTorch 的torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有信息。

forward

<来源>

代码语言:javascript
复制
( pixel_values: Optional = None labels: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.ImageClassifierOutputWithNoAttention or tuple(torch.FloatTensor)

参数

  • pixel_values (torch.FloatTensor,形状为(batch_size, num_channels, height, width)) — 像素值。可以使用 AutoImageProcessor 获取像素值。有关详细信息,请参阅 ConvNextImageProcessor.call()。
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor,形状为(batch_size,)optional) — 用于计算图像分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.ImageClassifierOutputWithNoAttention 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.ImageClassifierOutputWithNoAttention 或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时)包含根据配置(RegNetConfig)和输入的不同元素。

  • loss (torch.FloatTensor,形状为(1,)可选,当提供labels时返回) — 分类(如果config.num_labels==1则为回归)损失。
  • logits (torch.FloatTensor,形状为(batch_size, config.num_labels)) — 分类(如果config.num_labels==1则为回归)得分(SoftMax 之前)。
  • hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, num_channels, height, width)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出 + 每个阶段的输出)。模型在每个阶段输出的隐藏状态(也称为特征图)。

RegNetForImageClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在此之后调用Module实例,而不是这个函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, RegNetForImageClassification
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040")
>>> model = RegNetForImageClassification.from_pretrained("facebook/regnet-y-040")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat

TensorFlow 隐藏 TensorFlow 内容

TFRegNetModel

class transformers.TFRegNetModel

<来源>

代码语言:javascript
复制
( config: RegNetConfig *inputs **kwargs )

参数

  • config (RegNetConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

裸的 RegNet 模型输出原始特征,没有特定的头部。这个模型是一个 Tensorflow tf.keras.layers.Layer子类。将其用作常规的 Tensorflow 模块,并参考 Tensorflow 文档以获取有关一般用法和行为的所有信息。

call

<来源>

代码语言:javascript
复制
( pixel_values: Tensor output_hidden_states: Optional = None return_dict: Optional = None training: bool = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndNoAttention or tuple(tf.Tensor)

参数

  • pixel_values (tf.Tensor,形状为(batch_size, num_channels, height, width)) — 像素值。像素值可以使用 AutoImageProcessor 获取。有关详细信息,请参阅ConveNextImageProcessor.__call__
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndNoAttentiontuple(tf.Tensor)

一个transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndNoAttention或一个tf.Tensor元组(如果传递了return_dict=False或当config.return_dict=False时)包含各种元素,取决于配置(RegNetConfig)和输入。

  • last_hidden_state (tf.Tensor,形状为(batch_size, num_channels, height, width)) — 模型最后一层输出的隐藏状态序列。
  • pooler_output (tf.Tensor,形状为(batch_size, hidden_size)) — 空间维度上进行池化操作后的最后一层隐藏状态。
  • hidden_states (tuple(tf.Tensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, num_channels, height, width)tf.Tensor元组(如果模型有嵌入层,则为嵌入的输出+每个层的输出)。 模型在每个层的输出处的隐藏状态以及可选的初始嵌入输出。

TFRegNetModel 前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, TFRegNetModel
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040")
>>> model = TFRegNetModel.from_pretrained("facebook/regnet-y-040")

>>> inputs = image_processor(image, return_tensors="tf")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 1088, 7, 7]

TFRegNetForImageClassification

class transformers.TFRegNetForImageClassification

<来源>

代码语言:javascript
复制
( config: RegNetConfig *inputs **kwargs )

参数

  • config(RegNetConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部带有图像分类头部的 RegNet 模型(在池化特征的顶部是一个线性层),例如用于 ImageNet。

这个模型是一个 Tensorflow tf.keras.layers.Layer子类。将其用作常规的 Tensorflow 模块,并参考 Tensorflow 文档以获取所有与一般用法和行为相关的事项。

call

<来源>

代码语言:javascript
复制
( pixel_values: Optional = None labels: Optional = None output_hidden_states: Optional = None return_dict: Optional = None training: bool = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)

参数

  • pixel_values (tf.Tensor,形状为(batch_size, num_channels, height, width)) — 像素值。可以使用 AutoImageProcessor 获取像素值。有关详细信息,请参阅ConveNextImageProcessor.__call__
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通元组。
  • labels (tf.Tensor,形状为(batch_size,)可选) — 用于计算图像分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个tf.Tensor元组(如果传递return_dict=False或当config.return_dict=False时)包含根据配置(RegNetConfig)和输入的不同元素。

  • loss (tf.Tensor,形状为(batch_size, )可选,当提供labels时返回) — 分类(或回归,如果config.num_labels==1)损失。
  • logits (tf.Tensor,形状为(batch_size, config.num_labels)) — 分类(或回归,如果config.num_labels==1)得分(SoftMax 之前)。
  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(用于嵌入输出和每层输出各一个)。 模型在每一层输出处的隐藏状态加上初始嵌入输出。
  • attentionstuple(tf.Tensor)可选,当传递output_attentions=True或当config.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。 在自注意力头中使用注意力 softmax 后的注意力权重,用于计算加权平均值。

TFRegNetForImageClassification 前向方法,覆盖__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者会负责运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, TFRegNetForImageClassification
>>> import tensorflow as tf
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040")
>>> model = TFRegNetForImageClassification.from_pretrained("facebook/regnet-y-040")

>>> inputs = image_processor(image, return_tensors="tf")
>>> logits = model(**inputs).logits

>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = int(tf.math.argmax(logits, axis=-1))
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat

JAXHide JAX content

FlaxRegNetModel

class transformers.FlaxRegNetModel

<来源>

代码语言:javascript
复制
( config: RegNetConfig input_shape = (1, 224, 224, 3) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config(RegNetConfig)- 模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)- 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype执行。 请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。 如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

裸的 RegNet 模型输出原始特征,没有任何特定的头部。

这个模型继承自 FlaxPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载、保存和从 PyTorch 模型转换权重)。

这个模型也是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取与一般用法和行为相关的所有内容。

最后,这个模型支持 JAX 的固有特性,比如:

__call__

<来源>

代码语言:javascript
复制
( pixel_values params: dict = None train: bool = False output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或tuple(torch.FloatTensor)

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含根据配置(<class 'transformers.models.regnet.configuration_regnet.RegNetConfig'>)和输入的不同元素。

  • last_hidden_state (jnp.ndarray,形状为(batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列。
  • pooler_output (jnp.ndarray,形状为(batch_size, hidden_size)) — 序列第一个标记(分类标记)的最后一层隐藏状态,进一步由线性层和 Tanh 激活函数处理。线性层的权重是在预训练期间从下一个句子预测(分类)目标中训练的。
  • hidden_states (tuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入输出,一个用于每一层的输出)。 模型在每一层的输出隐藏状态加上初始嵌入输出。
  • attentions (tuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。 注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FlaxRegNetPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, FlaxRegNetModel
>>> from PIL import Image
>>> import requests

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040")
>>> model = FlaxRegNetModel.from_pretrained("facebook/regnet-y-040")

>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state

FlaxRegNetForImageClassification

class transformers.FlaxRegNetForImageClassification

<来源>

代码语言:javascript
复制
( config: RegNetConfig input_shape = (1, 224, 224, 3) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (RegNetConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtype (jax.numpy.dtype, 可选, 默认为 jax.numpy.float32) — 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype执行。 请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。 如果您希望更改模型参数的 dtype,请参阅 to_fp16()和 to_bf16()。

在顶部添加一个图像分类头的 RegNet 模型(在池化特征的顶部添加一个线性层),例如用于 ImageNet。

这个模型继承自 FlaxPreTrainedModel。查看超类文档以了解库实现的所有模型的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

这个模型也是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以了解所有与一般用法和行为相关的事项。

最后,这个模型支持内在的 JAX 特性,比如:

__call__

<来源>

代码语言:javascript
复制
( pixel_values params: dict = None train: bool = False output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxImageClassifierOutputWithNoAttention or tuple(torch.FloatTensor)

返回

transformers.modeling_flax_outputs.FlaxImageClassifierOutputWithNoAttentiontuple(torch.FloatTensor)

一个transformers.modeling_flax_outputs.FlaxImageClassifierOutputWithNoAttention或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含根据配置(<class 'transformers.models.regnet.configuration_regnet.RegNetConfig'>)和输入的不同元素。

  • logits(形状为(batch_size, config.num_labels)jnp.ndarray)—分类(如果config.num_labels==1则为回归)得分(SoftMax 之前)。
  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=True
  • config.output_hidden_states=True): 形状为(batch_size, num_channels, height, width)jnp.ndarray元组(如果模型有嵌入层,则为嵌入的输出+每个阶段的输出)。模型在每个阶段输出的隐藏状态(也称为特征图)。

FlaxRegNetPreTrainedModel的前向方法覆盖了__call__特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在之后调用Module实例,而不是这个函数,因为前者会负责运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, FlaxRegNetForImageClassification
>>> from PIL import Image
>>> import jax
>>> import requests

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040")
>>> model = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040")

>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> logits = outputs.logits

>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = jax.numpy.argmax(logits, axis=-1)
>>> print("Predicted class:", model.config.id2label[predicted_class_idx.item()])

ResNet

原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/resnet

概述

ResNet 模型是由 Kaiming He、Xiangyu Zhang、Shaoqing Ren 和 Jian Sun 在图像识别的深度残差学习中提出的。我们的实现遵循了Nvidia所做的小改动,我们在瓶颈的3x3卷积中应用stride=2进行下采样,而不是在第一个1x1中。这通常被称为“ResNet v1.5”。

ResNet 引入了残差连接,它们允许训练具有未知层数(高达 1000 层)的网络。ResNet 赢得了 2015 年 ILSVRC 和 COCO 竞赛,这是深度计算机视觉的一个重要里程碑。

论文的摘要如下:

更深的神经网络更难训练。我们提出了一个残差学习框架,以便训练比以前使用的网络更深的网络变得更容易。我们明确地将层重新构建为学习残差函数,参考层输入,而不是学习无参考的函数。我们提供了全面的实证证据,表明这些残差网络更容易优化,并且可以从明显增加的深度中获得准确性。在 ImageNet 数据集上,我们评估了深度高达 152 层的残差网络—比 VGG 网络深 8 倍,但仍具有较低的复杂性。这些残差网络的集合在 ImageNet 测试集上实现了 3.57%的错误率。这一结果赢得了 ILSVRC 2015 分类任务的第一名。我们还对具有 100 和 1000 层的 CIFAR-10 进行了分析。表示的深度对许多视觉识别任务至关重要。仅仅由于我们极其深的表示,我们在 COCO 目标检测数据集上获得了 28%的相对改进。深度残差网络是我们提交给 ILSVRC 和 COCO 2015 竞赛的基础,我们还在 ImageNet 检测、ImageNet 定位、COCO 检测和 COCO 分割任务上获得了第一名。

下面的图示了 ResNet 的架构。取自原始论文

这个模型由Francesco贡献。这个模型的 TensorFlow 版本是由amyeroberts添加的。原始代码可以在这里找到。

资源

一个官方 Hugging Face 和社区(由🌎表示)资源列表,帮助您开始使用 ResNet。

图像分类

  • ResNetForImageClassification 由这个示例脚本笔记本支持。
  • 参见:图像分类任务指南

如果您有兴趣提交资源以包含在这里,请随时打开一个拉取请求,我们将对其进行审查!资源应该理想地展示一些新东西,而不是重复现有资源。

ResNetConfig

class transformers.ResNetConfig

<来源>

代码语言:javascript
复制
( num_channels = 3 embedding_size = 64 hidden_sizes = [256, 512, 1024, 2048] depths = [3, 4, 6, 3] layer_type = 'bottleneck' hidden_act = 'relu' downsample_in_first_stage = False downsample_in_bottleneck = False out_features = None out_indices = None **kwargs )

参数

  • num_channels (int, 可选, 默认为 3) — 输入通道数。
  • embedding_size (int, 可选, 默认为 64) — 嵌入层的维度(隐藏大小)。
  • hidden_sizes (List[int], 可选, 默认为[256, 512, 1024, 2048]) — 每个阶段的维度(隐藏大小)。
  • depths (List[int], 可选, 默认为 [3, 4, 6, 3]) — 每个阶段的深度(层数)。
  • layer_type (str, 可选, 默认为 "bottleneck") — 要使用的层,可以是 "basic"(用于较小的模型,如 resnet-18 或 resnet-34)或 "bottleneck"(用于较大的模型,如 resnet-50 及以上)。
  • hidden_act (str, 可选, 默认为 "relu") — 每个块中的非线性激活函数。如果是字符串,支持 "gelu", "relu", "selu""gelu_new"
  • downsample_in_first_stage (bool, 可选, 默认为 False) — 如果为 True,第一个阶段将使用 stride 为 2 对输入进行下采样。
  • downsample_in_bottleneck (bool, 可选, 默认为 False) — 如果为 True,ResNetBottleNeckLayer 中的第一个 conv 1x1 将使用 stride 为 2 对输入进行下采样。
  • out_features (List[str], 可选) — 如果用作主干,要输出的特征列表。可以是 "stem", "stage1", "stage2" 等(取决于模型有多少阶段)。如果未设置且设置了 out_indices,将默认为相应的阶段。如果未设置且未设置 out_indices,将默认为最后一个阶段。必须按照 stage_names 属性中定义的顺序。
  • out_indices (List[int], 可选) — 如果用作主干,要输出的特征的索引列表。可以是 0、1、2 等(取决于模型有多少阶段)。如果未设置且设置了 out_features,将默认为相应的阶段。如果未设置且未设置 out_features,将默认为最后一个阶段。必须按照 stage_names 属性中定义的顺序。

这是配置类,用于存储 ResNetModel 的配置。它用于根据指定的参数实例化 ResNet 模型,定义模型架构。使用默认值实例化配置将产生类似于 ResNet microsoft/resnet-50 架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

代码语言:javascript
复制
>>> from transformers import ResNetConfig, ResNetModel

>>> # Initializing a ResNet resnet-50 style configuration
>>> configuration = ResNetConfig()

>>> # Initializing a model (with random weights) from the resnet-50 style configuration
>>> model = ResNetModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

PytorchHide Pytorch 内容

ResNetModel

class transformers.ResNetModel

<来源>

代码语言:javascript
复制
( config )

参数

  • config (ResNetConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的 ResNet 模型输出原始特征,没有特定的头部。这个模型是 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

代码语言:javascript
复制
( pixel_values: Tensor output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention or tuple(torch.FloatTensor)

参数

  • pixel_values (torch.FloatTensor,形状为 (batch_size, num_channels, height, width)) — 像素值。像素值可以使用 AutoImageProcessor 获取。有关详细信息,请参阅 ConvNextImageProcessor.call()。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请查看返回张量下的hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttentiontuple(torch.FloatTensor)

一个transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含各种元素,取决于配置(ResNetConfig)和输入。

  • last_hidden_state (torch.FloatTensor,形状为(batch_size, num_channels, height, width)) — 模型最后一层的隐藏状态序列。
  • pooler_output (torch.FloatTensor,形状为(batch_size, hidden_size)) — 在空间维度上进行池化操作后的最后一层隐藏状态。
  • hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, num_channels, height, width)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出的一个 + 每层的输出的一个)。 模型在每一层输出的隐藏状态以及可选的初始嵌入输出。

ResNetModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, ResNetModel
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
>>> model = ResNetModel.from_pretrained("microsoft/resnet-50")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 2048, 7, 7]

ResNetForImageClassification

class transformers.ResNetForImageClassification

<来源>

代码语言:javascript
复制
( config )

参数

  • config (ResNetConfig) — 模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

带有图像分类头部的 ResNet 模型(在池化特征之上的线性层),例如用于 ImageNet。

这个模型是 PyTorch 的torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

代码语言:javascript
复制
( pixel_values: Optional = None labels: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.ImageClassifierOutputWithNoAttention or tuple(torch.FloatTensor)

参数

  • pixel_values (torch.FloatTensor,形状为(batch_size, num_channels, height, width)) — 像素值。像素值可以使用 AutoImageProcessor 获取。有关详细信息,请参阅 ConvNextImageProcessor.call()。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请查看返回张量下的hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算图像分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.ImageClassifierOutputWithNoAttention 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.ImageClassifierOutputWithNoAttention 或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时)包含各种元素,这取决于配置(ResNetConfig)和输入。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供labels时返回) — 分类(如果config.num_labels==1则为回归)损失。
  • logits (torch.FloatTensor,形状为 (batch_size, config.num_labels)) — 分类(如果config.num_labels==1则为回归)得分(SoftMax 之前)。
  • hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为 (batch_size, num_channels, height, width)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每个阶段的输出)。模型在每个阶段输出的隐藏状态(也称为特征图)。

ResNetForImageClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, ResNetForImageClassification
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
>>> model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
tiger cat

TensorFlowHide TensorFlow 内容

TFResNetModel

class transformers.TFResNetModel

<来源>

代码语言:javascript
复制
( config: ResNetConfig **kwargs )

参数

  • config(ResNetConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

裸的 ResNet 模型输出原始特征,没有特定的头部。这个模型是 TensorFlow tf.keras.layers.Layer子类。将其用作常规的 TensorFlow 模块,并参考 TensorFlow 文档以获取与一般用法和行为相关的所有内容。

call

<来源>

代码语言:javascript
复制
( pixel_values: Tensor output_hidden_states: Optional = None return_dict: Optional = None training: bool = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndNoAttention or tuple(tf.Tensor)

参数

  • pixel_values (tf.Tensor,形状为 (batch_size, num_channels, height, width)) — 像素值。可以使用 AutoImageProcessor 获取像素值。有关详细信息,请参阅 ConvNextImageProcessor.call()。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通元组。

返回

transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndNoAttentiontuple(tf.Tensor)

一个transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndNoAttention或一个tf.Tensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含各种元素,具体取决于配置(ResNetConfig)和输入。

  • last_hidden_state(形状为(batch_size, num_channels, height, width)tf.Tensor)— 模型最后一层的隐藏状态序列。
  • pooler_output(形状为(batch_size, hidden_size)tf.Tensor)— 在空间维度上进行池化操作后的最后一层隐藏状态。
  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, num_channels, height, width)tf.Tensor元组(如果模型具有嵌入层,则为嵌入输出的输出+每层的输出)。 模型在每一层输出处的隐藏状态以及可选的初始嵌入输出。

TFResNetModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, TFResNetModel
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
>>> model = TFResNetModel.from_pretrained("microsoft/resnet-50")

>>> inputs = image_processor(image, return_tensors="tf")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 2048, 7, 7]

TFResNetForImageClassification

class transformers.TFResNetForImageClassification

<来源>

代码语言:javascript
复制
( config: ResNetConfig **kwargs )

参数

  • config(ResNetConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部带有图像分类头部的 ResNet 模型(在池化特征的顶部有一个线性层),例如用于 ImageNet。

该模型是 TensorFlow tf.keras.layers.Layer子类。将其用作常规的 TensorFlow 模块,并参考 TensorFlow 文档以获取有关一般用法和行为的所有相关信息。

call

<来源>

代码语言:javascript
复制
( pixel_values: Tensor = None labels: Tensor = None output_hidden_states: bool = None return_dict: bool = None training: bool = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFImageClassifierOutputWithNoAttention or tuple(tf.Tensor)

参数

  • pixel_values(形状为(batch_size, num_channels, height, width)tf.Tensor)— 像素值。像素值可以使用 AutoImageProcessor 获取。有关详细信息,请参阅 ConvNextImageProcessor.call()。
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通元组。
  • labels(形状为(batch_size,)tf.Tensor可选)— 用于计算图像分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_tf_outputs.TFImageClassifierOutputWithNoAttentiontuple(tf.Tensor)

一个transformers.modeling_tf_outputs.TFImageClassifierOutputWithNoAttention或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含根据配置(ResNetConfig)和输入的不同元素。

  • loss(形状为(1,)tf.Tensor可选,当提供labels时返回) — 分类(如果 config.num_labels==1 则为回归)损失。
  • logits(形状为(batch_size, config.num_labels)tf.Tensor) — 分类(如果 config.num_labels==1 则为回归)得分(SoftMax 之前)。
  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, num_channels, height, width)tf.Tensor元组(如果模型具有嵌入层,则为嵌入的输出+每个阶段的输出)。模型在每个阶段输出的隐藏状态(也称为特征图)。

TFResNetForImageClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, TFResNetForImageClassification
>>> import tensorflow as tf
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
>>> model = TFResNetForImageClassification.from_pretrained("microsoft/resnet-50")

>>> inputs = image_processor(image, return_tensors="tf")
>>> logits = model(**inputs).logits

>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = int(tf.math.argmax(logits, axis=-1))
>>> print(model.config.id2label[predicted_label])
tiger cat

JAXHide JAX content

FlaxResNetModel

class transformers.FlaxResNetModel

<来源>

代码语言:javascript
复制
( config: ResNetConfig input_shape = (1, 224, 224, 3) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config(ResNetConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtype (jax.numpy.dtype, optional, defaults to jax.numpy.float32) — 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定,所有计算将使用给定的dtype执行。 请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。 如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

裸的 ResNet 模型输出原始特征,没有特定的头部。

此模型继承自 FlaxPreTrainedModel。检查超类文档以获取库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型还是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取有关一般用法和行为的所有信息。

最后,此模型支持内在的 JAX 特性,例如:

__call__

<来源>

代码语言:javascript
复制
( pixel_values params: dict = None train: bool = False output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPoolingAndNoAttention or tuple(torch.FloatTensor)

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPoolingAndNoAttentiontuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPoolingAndNoAttention 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包括根据配置 (<class 'transformers.models.resnet.configuration_resnet.ResNetConfig'>) 和输入的不同元素。

  • last_hidden_state (jnp.ndarray of shape (batch_size, num_channels, height, width)) — 模型最后一层输出的隐藏状态序列。
  • pooler_output (jnp.ndarray of shape (batch_size, hidden_size)) — 空间维度上进行池化操作后的最后一层隐藏状态。
  • hidden_states (tuple(jnp.ndarray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — 模型在每一层输出的隐藏状态的元组,包括可选的初始嵌入输出。

FlaxResNetPreTrainedModel 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用 Module 实例,而不是调用此函数,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, FlaxResNetModel
>>> from PIL import Image
>>> import requests

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
>>> model = FlaxResNetModel.from_pretrained("microsoft/resnet-50")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state

FlaxResNetForImageClassification

class transformers.FlaxResNetForImageClassification

<来源>

代码语言:javascript
复制
( config: ResNetConfig input_shape = (1, 224, 224, 3) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (ResNetConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
  • dtype (jax.numpy.dtype, optional, 默认为 jax.numpy.float32) — 计算的数据类型。可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了 dtype,则所有计算将使用给定的 dtype 执行。 请注意,这只指定了计算的数据类型,不影响模型参数的数据类型。 如果希望更改模型参数的数据类型,请参阅 to_fp16() 和 to_bf16()。

在顶部带有图像分类头的 ResNet 模型(在池化特征之上的线性层),例如用于 ImageNet。

此模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型也是 flax.linen.Module 的子类。将其用作常规的 Flax linen Module,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,这个模型支持内在的 JAX 特性,比如:

__call__

<来源>

代码语言:javascript
复制
( pixel_values params: dict = None train: bool = False output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxImageClassifierOutputWithNoAttention or tuple(torch.FloatTensor)

返回

transformers.modeling_flax_outputs.FlaxImageClassifierOutputWithNoAttentiontuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxImageClassifierOutputWithNoAttention 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置(<class 'transformers.models.resnet.configuration_resnet.ResNetConfig'>)和输入的不同元素。

  • logits(形状为 (batch_size, config.num_labels)jnp.ndarray) — 分类(如果 config.num_labels==1 则为回归)得分(SoftMax 之前)。
  • hidden_statestuple(jnp.ndarray)可选,当传递了 output_hidden_states=True 或当
  • config.output_hidden_states=True): 形状为 (batch_size, num_channels, height, width)jnp.ndarray 元组(如果模型有嵌入层,则为嵌入的输出 + 每个阶段的输出)。模型在每个阶段输出的隐藏状态(也称为特征图)。

FlaxResNetPreTrainedModel 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在之后调用 Module 实例而不是这个函数,因为前者会处理运行前后的处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, FlaxResNetForImageClassification
>>> from PIL import Image
>>> import jax
>>> import requests

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
>>> model = FlaxResNetForImageClassification.from_pretrained("microsoft/resnet-50")

>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> logits = outputs.logits

>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = jax.numpy.argmax(logits, axis=-1)
>>> print("Predicted class:", model.config.id2label[predicted_class_idx.item()])

😕/jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)

__call__

<来源>

代码语言:javascript
复制
( pixel_values params: dict = None train: bool = False output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxImageClassifierOutputWithNoAttention or tuple(torch.FloatTensor)

返回

transformers.modeling_flax_outputs.FlaxImageClassifierOutputWithNoAttentiontuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxImageClassifierOutputWithNoAttention 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置(<class 'transformers.models.resnet.configuration_resnet.ResNetConfig'>)和输入的不同元素。

  • logits(形状为 (batch_size, config.num_labels)jnp.ndarray) — 分类(如果 config.num_labels==1 则为回归)得分(SoftMax 之前)。
  • hidden_statestuple(jnp.ndarray)可选,当传递了 output_hidden_states=True 或当
  • config.output_hidden_states=True): 形状为 (batch_size, num_channels, height, width)jnp.ndarray 元组(如果模型有嵌入层,则为嵌入的输出 + 每个阶段的输出)。模型在每个阶段输出的隐藏状态(也称为特征图)。

FlaxResNetPreTrainedModel 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在之后调用 Module 实例而不是这个函数,因为前者会处理运行前后的处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoImageProcessor, FlaxResNetForImageClassification
>>> from PIL import Image
>>> import jax
>>> import requests

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
>>> model = FlaxResNetForImageClassification.from_pretrained("microsoft/resnet-50")

>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> logits = outputs.logits

>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = jax.numpy.argmax(logits, axis=-1)
>>> print("Predicted class:", model.config.id2label[predicted_class_idx.item()])
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-06-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • MobileViTV2
    • 概述
      • 使用提示
        • MobileViTV2Config
          • class transformers.MobileViTV2Config
        • MobileViTV2Model
          • class transformers.MobileViTV2Model
        • MobileViTV2ForImageClassification
          • class transformers.MobileViTV2ForImageClassification
        • MobileViTV2ForSemanticSegmentation
          • class transformers.MobileViTV2ForSemanticSegmentation
      • 邻域注意力变换器
        • 概述
          • 使用提示
            • 资源
              • NatConfig
                • class transformers.NatConfig
              • NatModel
                • class transformers.NatModel
              • NatForImageClassification
                • class transformers.NatForImageClassification
            • PoolFormer
              • 概述
                • 使用提示
                  • 资源
                    • PoolFormerConfig
                      • class transformers.PoolFormerConfig
                    • PoolFormerFeatureExtractor
                      • class transformers.PoolFormerFeatureExtractor
                    • PoolFormerImageProcessor
                      • class transformers.PoolFormerImageProcessor
                    • PoolFormerModel
                      • class transformers.PoolFormerModel
                    • PoolFormerForImageClassification
                      • class transformers.PoolFormerForImageClassification
                  • 金字塔视觉变换器(PVT)
                    • 概述
                      • PvtConfig
                        • class transformers.PvtConfig
                      • PvtImageProcessor
                        • class transformers.PvtImageProcessor
                      • PvtForImageClassification
                        • class transformers.PvtForImageClassification
                      • PvtModel
                        • class transformers.PvtModel
                    • RegNet
                      • 概述
                        • 资源
                          • RegNetConfig
                            • class transformers.RegNetConfig
                          • RegNetModel
                            • class transformers.RegNetModel
                          • RegNetForImageClassification
                            • class transformers.RegNetForImageClassification
                          • TFRegNetModel
                            • class transformers.TFRegNetModel
                          • TFRegNetForImageClassification
                            • class transformers.TFRegNetForImageClassification
                          • FlaxRegNetModel
                            • class transformers.FlaxRegNetModel
                          • FlaxRegNetForImageClassification
                            • class transformers.FlaxRegNetForImageClassification
                        • ResNet
                          • 概述
                            • 资源
                              • ResNetConfig
                                • class transformers.ResNetConfig
                              • ResNetModel
                                • class transformers.ResNetModel
                              • ResNetForImageClassification
                                • class transformers.ResNetForImageClassification
                              • TFResNetModel
                                • class transformers.TFResNetModel
                              • TFResNetForImageClassification
                                • class transformers.TFResNetForImageClassification
                              • FlaxResNetModel
                                • class transformers.FlaxResNetModel
                              • FlaxResNetForImageClassification
                                • class transformers.FlaxResNetForImageClassification
                            领券
                            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档