前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >数据分析:基于STAR+FeatureCounts的RNA-seq分析全流程流程

数据分析:基于STAR+FeatureCounts的RNA-seq分析全流程流程

原创
作者头像
生信学习者
发布2024-07-05 15:08:58
2220
发布2024-07-05 15:08:58
请添加图片描述
请添加图片描述

流程主要包含两部分组成:

  1. 第一部分:二代测序数据的Raw data的fastq文件转换成Gene Count或者Features Counts表(行是Features,列是样本名);
  2. 第二部分:对counts 表进行统计分析,并对其生物学意义或者临床意义进行解读。

Installating Software

分析流程涉及到众多的软件以及R包等,为了更方便配置该环境,建议使用anaconda软件安装。anaconda是包管理工具,可以将软件作为其包进行安装管理,并且可以设置多个环境,方便不同依赖环境的软件在同一台机器安装。安装anaconda方法见网上教程。

流程所需要软件:Use conda search software before conda install

  1. conda install -c bioconda fastqc --yes
  2. conda install -c bioconda trim-galore --yes
  3. conda install -c sortmerna --yes
  4. conda install -c bioconda star --yes
  5. conda install -c bioconda subread --yes
  6. conda install -c bioconda multiqc --yes
  7. conda install -c bioconda r-base

流程所需要的R包:

代码语言:javascript
复制
# method1
if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
​
RNA_seq_packages <- function(){
metr_pkgs <- c("DESeq2", "ggplot2", "clusterProfiler", "biomaRt", "ReactomePA", "DOSE", 
               "KEGG.db", "KEGG.db", "org.Mm.eg.db", "org.Hs.eg.db", "pheatmap",
               "genefilter","RColorBrewer", "GO.db", "topGO","dplyr","gage","ggsci")
list_installed <- installed.packages()
new_pkgs <- subset(metr_pkgs, !(metr_pkgs %in% list_installed[, "Package"]))
if(length(new_pkgs)!=0){if (!requireNamespace("BiocManager", quietly = TRUE))
        install.packages("BiocManager")
        BiocManager::install(new_pkgs)
        print(c(new_pkgs, " packages added..."))
    }
if((length(new_pkgs)<1)){
        print("No new packages added...")
    }
}
RNA_seq_packages()
​
# method2
install.packages("pacman")
pacman::p_load(c("DESeq2", "ggplot2", "clusterProfiler", "biomaRt", "ReactomePA", "DOSE", 
               "KEGG.db", "KEGG.db", "org.Mm.eg.db", "org.Hs.eg.db", "pheatmap",
               "genefilter","RColorBrewer", "GO.db", "topGO","dplyr","gage","ggsci"))

The Folder Structure

代码语言:javascript
复制
── RNA_seq_dir/
  │   └── annotation/               <- Genome annotation file (.GTF/.GFF)
  │  
  │   └── genome/                   <- Host genome file (.FASTA)
  │  
  │   └── raw_data/                 <- Location of input  RNAseq data
  │  
  │   └── output/                   <- Data generated during processing steps
  │       ├── 01.fastqc/            <- Main alignment files for each sample
  │       ├── 02.trim/              <-  Log from running STAR alignment step
  │       ├── 03.sortrRNA/          <- STAR alignment counts output (for comparison with featureCounts)
  │           ├── aligned/          <-  Sequences that aligned to rRNA databases (rRNA contaminated)
  │           ├── filtered/         <-  Sequences with rRNA sequences removed  (rRNA-free)
  │           ├── logs/             <- logs from running SortMeRNA
  │       ├── 04.aligment/          <- Main alignment files for each sample
  │           ├── aligned_bam/      <-  Alignment files generated from STAR (.BAM)
  │           ├── aligned_logs/     <- Log from running STAR alignment step
  │       ├── 05.genecount/         <- Summarized gene counts across all samples
  │       ├── 06.multiQC/           <- Overall report of logs for each step
  │  
  │   └── sortmerna_db/             <- Folder to store the rRNA databases for SortMeRNA
  │       ├── index/                <- indexed versions of the rRNA sequences for faster alignment
  │       ├── rRNA_databases/       <- rRNA sequences from bacteria, archea and eukaryotes
  │  
  │   └── star_index/               <-  Folder to store the indexed genome files from STAR 

Download Host Genome

下载基因组以及基因组注释信息,前者是fasta格式,后者是GTF或者GFF等格式,两者的版本要是同一版本。UCSCENSEMBLNCBIGENCODE提供了多个下载网址。注意每个网址对同一物种基因组的命名,它会反映出版本不同。下载压缩文件gz后,可以使用gunzip解压。

  1. GENCODE: # Download genome fasta file into the genome/ folder wget ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_mouse/release_M12/GRCm38.p5.genome.fa.gz ​ # Download annotation file into the annotation/ folder wget ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_mouse/release_M12/gencode.vM12.annotation.gtf.gz
  2. ENSEMBL: # download genome wget ftp://ftp.ensembl.org/pub/release-100/fasta/mus_musculus/dna/Mus_musculus.GRCm38.dna.primary.fa.gz # download annotation file wget ftp://ftp.ensembl.org/pub/release-100/gtf/mus_musculus/Mus_musculus.GRCm38.100.gtf.gz

The Procedures of Analysis pipeline

所需软件安装完成后,可以通过which命令查看是否已经export在环境中。分析流程主要包含11步,其中1-6步是fastq数据质控以及注释;7-12步是简单的统计分析;后续会扩展其他分析。

Step1: Quality Control by Fastqc

fastqc能够对二代测序数据的原始数据fastq进行质控检测,它能从多方面反映出fastq数据的质量情况(如碱基质量分布和GC含量等)

代码语言:javascript
复制
fastqc -o results/01.fastqc/ --noextract  raw_data/sampleid.fq.gz

Step2: Removing Low Quality Sequences with Trim_Galore

Trim_Galore是一款控制reads质量并且能够移除接头的软件。在第一步了解fastq质量后,设定过滤fastq碱基质量的阈值,对fastq数据进行质控。Trim_Galore包含了cutadapt和fastqc,前者目的是移除接头,或者是获取reads质量情况再根据阈值过滤低质量的reads。

代码语言:javascript
复制
trim_galore \
--quality 20 \
--fastqc \
--length 25 \
--output_dir results/02.trim/ \
input/sample.fastq

Step3: Removing rRNA Sequences with SortMeRNA

SortMeRNA是一款在宏基因组和宏转录组领域内对二代测序数据进行过滤、比对和OTU聚类的软件,其核心算法是根据种子序列快速比对敏感序列,该软件的目的是过滤宏转录组数据的核糖体DNA序列。在使用该软件前,需要下载核糖体DNA序列(fasta格式)并对DNA序列进行建立比对索引。(在测试过程,发现耗时很久,并且存在会对db报错,暂时没有解决)

代码语言:javascript
复制
# download the rRNA DNA sequences
wget https://github.com/biocore/sortmerna/tree/master/data/rRNA_databases/*fasta
​
# build index 
STAR \
  --runThreadN 6 \
  --runMode genomeGenerate \
  --genomeDir index/silva-euk-28s-id98 \
  --genomeFastaFiles ./silva-euk-28s-id98.fasta
# remove rRNA sequence 
rm -rf /home/sortmerna/run/  # debug for exist db
sortmerna \
  --ref /home/database/sortmerna_db/silva-bac-16s-id90.fasta \
  --reads ./result/02.trim/TAC_NC04_RNA_b1.r1_val_1.fq.gz \
  --reads ./result/02.trim/TAC_NC04_RNA_b1.r2_val_2.fq.gz \
  --aligned ./result/03.sortrRNA/TAC_NC04_aligned \
  --other ./result/03.sortrRNA/TAC_NC04_filtered \
  --fastx

Step4: Aligning to Genome with STAR-aligner

STAR(Spliced Transcripts Alignment to a Reference)是基于Sequential maximum mappable seed search方法将RNA_seq数据比对到参考基因组上的软件。

代码语言:javascript
复制
# create genome index for alignment
mkdir genome_index_star
STAR \
  --runThreadN 30 \
  --runMode genomeGenerate \
  --genomeDir genome_index_star \
  --genomeFastaFiles Mus_musculus.GRCm38.dna_sm.primary_assembly.fa \
  --sjdbGTFfile ./genome_annotation/Mus_musculus.GRCm38.100.gtf \
  --sjdbOverhang 99
​
# run aligning 
STAR \
  --genomeDir /home/database/Mus_musculus.GRCm38_release100/genome_index_star \
  --readFilesIn ./result/03.sortrRNA/HF07_filtered.fq \
  --runThreadN 10 \
  --outSAMtype BAM SortedByCoordinate \
  --outFileNamePrefix ./result/04.aligment_v2/HF07 \
  --quantMode GeneCounts #\
  #--readFilesCommand zcat        # for gz files
​

Step5: Summarizing Gene Counts with featureCounts (subread)

subread是一个包含多个高效处理二代测序数据的软件的包,其中featureCounts能够从比对结果SAM/BAM和注释信息文件(annotation files GTF)获取genomic features(genes, exons,promoter,gene bodies, genomic bins和chromosomal locations)等。

代码语言:javascript
复制
# bam/sam files
dirlist=$(ls -t ./result/04.aligment/*.bam | tr '\n' ' ')
# obtain the features
featureCounts \
-a /home/database/Mus_musculus.GRCm38_release100/genome_annotation/Mus_musculus.GRCm38.100.gtf -o /home/project/Heart_failure/Assay/00.RNA_seq/result/05.genecount/final_count_v2.tsv \
-t exon \
-g gene_name \
--primary \
-T 10 \
$dirlist

Step6: Generating analysis report with multiqc

MultiQC可以综合多个软件的日志文件最后形成一个统一的报告文件,方便后续审视结果。

代码语言:javascript
复制
multiqc ./result/ --outdir result/06.multiQC

Step7: Importing Gene Counts into R/Rstudio

在将数据导入R前,需要了解不同数据库对基因ID的编码方式。大部分基因都有自己的5种类型ID,特定的基因如miRNA在miRBase中有自己的ID (NCBI的entrez ID及gene symbol,Ensembl的gene ID,UCSC的gene ID,KEGG的gene ID)。ID之间的关系参考bioDBnet网址信息。

请添加图片描述
请添加图片描述
  1. Entrez id: Entrez是NCBI是美国国立生物技术信息中心(National Center for BiotechnologyInformation)的检索系统。NCBI的Gene数据库包含了不同物种的基因信息,其中每一个基因都被编制一个唯一的识别号ID(因此不同生物或者同属不同种的生物间的同源基因编号也不相同), 这个ID就叫做Entrez ID,就是基因身份证啦。目前通用的是Entrez id,也就是gene id。 Entrez的第一个版本由NCBI于1991年在CD -ROM上发布,当时核酸序列来自GenBank和Protein Data Bank(PDB)数据库,蛋白序列来自GenBank、Protein Information Resource (PIR)、SWISS-PROT、PDB以及Protein Research Foundation (PRF)数据库,还从MEDLINE数据库(现在是PubMed)整合了文献摘要。 Gene:基因序列注释+检索,目前共有61118个人类的记录,68389个小鼠的记录(含有功能基因、假基因、预测基因等)
  2. Gene symbol: HUGO Gene Symbol(也叫做HGNC Symbol,即基因符号)是HGNC组织对基因进行命名描述的一个缩写标识符
  3. Ensembl id: 由英国的Sanger研究所以及欧洲生物信息学研究所(EMBI-EBI)联合共同协作开发的一套基因信息标记系统。 PS: 不同物种的基因ID是不同的
  4. HGNC id: HGNC(人类基因命名委员会)由美国国家人类基因组研究所(NHGRI)和 Wellcome Trust(英国)共同资助,其中的每个基因只有一个批准的基因symbol。HGNC ID是HGNC数据库分配的基因编号,每一个标准的Symbol都有对应的HGNC ID 。我们可以用这个编号,在HGNC数据库中搜索相关的基因。例如:HGNC:11998。
  5. Gene Name: Gene Name是经过HGNC批准的全基因名称;对应于上面批准的符号(Gene Symbol)。例如TP53对应的Gene Name就是:tumor protein p53。
  6. UCSC id: UCSC的ID以uc开头,BRCA1对应的就是uc002ict.4

基因ID转换:

常常在Entrez gene ID与Ensembl gene ID以及gene ID与gene symbol之间转换 ,常用的工具就是

  1. clusterProfiler: 使用方法:`bitr(geneID, fromType, toType, OrgDb, drop = TRUE)`` `geneID是输入的基因ID,fromType是输入的ID类型,toType是输出的ID类型,OrgDb注释的db文件,drop表示是否剔除NA数据
  2. biomaRt: mouse_mart <- useMart(host="www.ensembl.org",biomart="ENSEMBL_MART_ENSEMBL", dataset="mmusculus_gene_ensembl") mouse_ensemble_gene_id <- gene_count_format$Geneid mouse_gene_all <- getBM(attributes=c('ensembl_gene_id', 'entrezgene_id', "hgnc_symbol", 'external_gene_name', 'mgi_symbol', 'transcript_biotype', 'description'), filters='ensembl_gene_id', values=mouse_ensemble_gene_id, mart=mouse_mart)

读入数据

代码语言:javascript
复制
### load packages
library(dplyr)
library(tibble)
library(data.table)
library(DESeq2)
library(stringr)
### load data 
prof <- fread("final_count_v2.tsv")
phen <- read.csv("phenotype_20200629.csv")
### curation data 
gene_count_format <- prof %>% dplyr::select(c("Geneid", ends_with("bam"))) %>% 
      dplyr::rename_at(vars(ends_with("bam")), funs(str_replace(., "./result/04.aligment/", ""))) %>%
      dplyr::rename_at(vars(ends_with("bam")), funs(str_replace(., "Aligned.sortedByCoord.out.bam", ""))) 

处理数据:Differential Expression Gene by DESeq2 packages

代码语言:javascript
复制
Deseq2fun <- function(metaData, countData, 
                      group_col=c("TAC", "TAC_NC"),
                      occurence=0.5, ncount=10){
  # metaData <- phen
  # countData <- gene_count_format
  # group_col <- c("TAC", "TAC_NC")
  # occurence <- 0.5
  # ncount <- 10
  
  # get overlap 
  sid <- intersect(metaData$SampleID, colnames(countData))
  meta <- metaData %>% filter(SampleID%in%sid) %>% 
        filter(Group%in%group_col) %>%
        mutate(Group=factor(Group, levels = group_col)) %>%
        column_to_rownames("SampleID") 
  
  # quality control
  count <- countData %>% column_to_rownames("Geneid") %>% 
    dplyr::select(rownames(meta)) %>% 
    rownames_to_column("Type") %>% 
    filter(apply(dplyr::select(., -one_of("Type")), 1, function(x){sum(x != 0)/length(x)}) > occurence) %>%
            data.frame(.) %>% 
    column_to_rownames("Type")
  count <- count[rowSums(count) > ncount, ]
  
  # judge no row of profile filter
  if (nrow(count) == 0) {
    stop("No row of profile to be choosed\n")
  }
  
  # determine the right order between profile and phenotype 
  for(i in 1:ncol(count)){ 
    if (!(colnames(count) == rownames(meta))[i]) {
      stop(paste0(i, " Wrong"))
    }
  }
  
  dds <- DESeqDataSetFromMatrix(countData=count, 
                              colData=meta,
                              design=~Group)
  
  dds <- DESeq(dds)
  res <- results(dds, pAdjustMethod = "fdr", alpha = 0.05) %>% na.omit()
  res <- res[order(res$padj), ]
  return(list(dds=dds,results=res))
}
​
TAC_dge <- Deseq2fun(phen, gene_count_format)
TAC_dge_result <- TAC_dge$results 
TAC_dge_dds <- TAC_dge$dds
summary(TAC_dge_result)

Step8: Annotate Gene Symbols

除了上述两种ID转换方法,还存在其他ID转化方法。该方法结合DESeq2结果文件获取其他ID。使用org.Mm.eg.db包的mapIDs函数。

代码语言:javascript
复制
library(org.Mm.eg.db) 
​
# Add gene full name
TAC_dge_result$description <- mapIds(x = org.Mm.eg.db,
                              keys = row.names(TAC_dge_result),
                              column = "GENENAME",
                              keytype = "SYMBOL",
                              multiVals = "first")
​
# Add gene symbol
TAC_dge_result$symbol <- row.names(TAC_dge_result)
​
# Add ENTREZ ID
TAC_dge_result$entrez <- mapIds(x = org.Mm.eg.db,
                         keys = row.names(TAC_dge_result),
                         column = "ENTREZID",
                         keytype = "SYMBOL",
                         multiVals = "first")
​
# Add ENSEMBL
TAC_dge_result$ensembl <- mapIds(x = org.Mm.eg.db,
                          keys = row.names(TAC_dge_result),
                          column = "ENSEMBL",
                          keytype = "SYMBOL",
                          multiVals = "first")
​
# Subset for only significant genes (q < 0.05)
TAC_dge_sig <- subset(TAC_dge_result, padj < 0.05)
​
### output
# Write normalized gene counts to a .tsv file
write.table(x = as.data.frame(counts(TAC_dge_dds), normalized = T), 
            file = '../../Result/Profile/normalized_counts.tsv', 
            sep = '\t', 
            quote = F,
            col.names = NA)
​
# Write significant normalized gene counts to a .tsv file
write.table(x = counts(TAC_dge_dds[row.names(TAC_dge_sig)], normalized = T),
            file = '../../Result/Profile/normalized_counts_significant.tsv',
            sep = '\t',
            quote = F,
            col.names = NA)
​
# Write the annotated results table to a .tsv file
write.table(x = as.data.frame(TAC_dge_result), 
            file = "../../Result/Profile/results_gene_annotated.tsv", 
            sep = '\t', 
            quote = F,
            col.names = NA)
​
# Write significant annotated results table to a .tsv file
write.table(x = as.data.frame(TAC_dge_sig), 
            file = "../../Result/Profile/results_gene_annotated_significant.tsv", 
            sep = '\t', 
            quote = F,
            col.names = NA)

Step9: Plotting Gene Expression Data

从整体上看不同组的样本基因表达是否呈现自我成簇情况,这需要用到降维方法,通常适合转录组数据的降维方法有PCA和Rtsne等,这里使用PCA方法。后续会扩展其他方法。

代码语言:javascript
复制
library(ggplot2)
# Convert all samples to rlog
ddsMat_rlog <- rlog(TAC_dge_dds, blind = FALSE)
​
# Plot PCA by column variable
plotPCA(ddsMat_rlog, intgroup = "Group", ntop = 500) +
  geom_point(label=colnames(TAC_dge_dds), size = 5) + # Increase point size
  geom_hline(yintercept = 0, linetype = 2) + 
  geom_vline(xintercept = 0, linetype = 2) + 
  scale_y_continuous(limits = c(-20, 20)) + # change limits to fix figure dimensions
  ggtitle(label = "Principal Component Analysis (PCA)", 
          subtitle = "Top 500 most variable genes") +
  theme_bw() # remove default ggplot2 theme

基因表达情况还可以使用热图展示。

代码语言:javascript
复制
# Gather 30 significant genes and make matrix
mat <- assay(ddsMat_rlog[row.names(TAC_dge_sig)])[1:40, ]
​
# Choose which column variables you want to annotate the columns by.
annotation_col = data.frame(
  Group = factor(colData(ddsMat_rlog)$Group), 
  row.names = rownames(colData(ddsMat_rlog))
)
​
# Specify colors you want to annotate the columns by.
ann_colors = list(
  Group = c(TAC_NC = "lightblue", TAC = "darkorange")
)
​
library(pheatmap)
library(RColorBrewer)
# Make Heatmap with pheatmap function.
pheatmap(mat = mat, 
         color = colorRampPalette(brewer.pal(9, "YlOrBr"))(255), 
         scale = "row", # Scale genes to Z-score (how many standard deviations)
         annotation_col = annotation_col, # Add multiple annotations to the samples
         annotation_colors = ann_colors,# Change the default colors of the annotations
         fontsize = 10, # Make fonts smaller
         cellwidth = 10, # Make the cells wider
         show_rownames = T,
         show_colnames = T)

火山图能反应组间基因表达情况,通常分成3组:up-regulated, down-regulated 和 nonsignificant

代码语言:javascript
复制
# Gather Log-fold change and FDR-corrected pvalues from DESeq2 results
## - Change pvalues to -log10 (1.3 = 0.05)
data <- data.frame(gene = row.names(TAC_dge_result),
                   pval = -log10(TAC_dge_result$padj), 
                   lfc = TAC_dge_result$log2FoldChange) 
​
# Remove any rows that have NA as an entry
data <- na.omit(data)
​
# Color the points which are up or down
## If fold-change > 0 and pvalue > 1.3 (Increased significant)
## If fold-change < 0 and pvalue > 1.3 (Decreased significant)
data <- mutate(data, color = case_when(data$lfc > 0 & data$pval > 1.3 ~ "Increased",
                                       data$lfc < 0 & data$pval > 1.3 ~ "Decreased",
                                       data$pval < 1.3 ~ "nonsignificant"))
​
# Make a basic ggplot2 object with x-y values
ggplot(data, aes(x = lfc, y = pval, color = color)) + 
  ggtitle(label = "Volcano Plot", subtitle = "Colored by fold-change direction") +
  geom_point(size = 2.5, alpha = 0.8, na.rm = T) +
  scale_color_manual(name = "Directionality",
                     values = c(Increased = "#008B00", Decreased = "#CD4F39", nonsignificant = "darkgray")) +
  theme_bw(base_size = 14) + # change overall theme
  theme(legend.position = "right") + # change the legend
  xlab(expression(log[2]("TAC_NC" / "TAC"))) + # Change X-Axis label
  ylab(expression(-log[10]("adjusted p-value"))) + # Change Y-Axis label
  geom_hline(yintercept = 1.3, colour = "darkgrey") + # Add p-adj value cutoff line
  scale_y_continuous(trans = "log1p") # Scale yaxis due to large p-values

Step10: Finding Pathways from Differential Expressed Genes

通路富集分析(pathway enrichment analysis)是根据单个基因变化产生总体结论的好方法。 有时个体基因变化或大或小,均难以解释。 但是通过分析基因涉及的代谢途径,我们可以在更高层次上解释处理因素对基因的影响。常用富集分析的R包clusterProfiler

代码语言:javascript
复制
# Remove any genes that do not have any entrez identifiers
results_sig_entrez <- subset(TAC_dge_sig, is.na(entrez) == FALSE)
​
# Create a matrix of gene log2 fold changes
gene_matrix <- results_sig_entrez$log2FoldChange
​
# Add the entrezID's as names for each logFC entry
names(gene_matrix) <- results_sig_entrez$entrez
​
# KEGG
library(clusterProfiler)
kegg_enrich <- enrichKEGG(gene = names(gene_matrix),
                          organism = 'mouse',
                          pvalueCutoff = 0.05, 
                          qvalueCutoff = 0.10)
​
# Plot results
barplot(kegg_enrich, 
        drop = TRUE, 
        showCategory = 10, 
        title = "KEGG Enrichment Pathways",
        font.size = 8)
​
# GO 
go_enrich <- enrichGO(gene = names(gene_matrix),
                      OrgDb = 'org.Mm.eg.db', 
                      readable = T,
                      ont = "BP",
                      pvalueCutoff = 0.05, 
                      qvalueCutoff = 0.10)
​
# Plot results
barplot(go_enrich, 
        drop = TRUE, 
        showCategory = 10, 
        title = "GO Biological Pathways",
        font.size = 8)

Step11: Plotting KEGG Pathways

Pathview是一个软件包,可以使用KEGG标识符和对发现明显不同的基因进行覆盖倍数变化。 Pathview还可以与在KEGG数据库中找到的其他生物一起工作,并且可以绘制出特定生物的任何KEGG途径。

代码语言:javascript
复制
library(pathview)
pathview(gene.data = gene_matrix, 
         pathway.id = "04070", 
         species = "mouse")

Step12: Single Sample Gene-Set Enrichment Analysis

Single-sample GSEA (ssGSEA), an extension of Gene Set Enrichment Analysis (GSEA), calculates separate enrichment scores for each pairing of a sample and gene set. Each ssGSEA enrichment score represents the degree to which the genes in a particular gene set are coordinately up- or down-regulated within a sample.

ssGSEA富集分数表示通路的基因在样本中高低表达的程度,可以替代表达值。

代码语言:javascript
复制
# load packages
library(dplyr)
library(tibble)
library(data.table)
library(GSEABase)
library(GSVA)
​
# load data 
prof <- fread("../../Result/Profile/final_gene_hgnc.profile")
phen <- read.csv("../../Result/Phenotype/Heart_failure_phenotype_20200629.csv")
gene_set <- qusage::read.gmt("../../Result/GeneSetdb/msigdb.v7.1.symbols_v2.gmt") # msigdb: geneset
​
# Build ExpressionSet object 
get_expr_Set <- function(assay, meta){
  
  require(convert)
  colnames(assay)[1] <- "name"
  assay <- assay[rowSums(assay[, -1]) > 0, ]
  dat_assay <- setDT(assay)[, lapply(.SD, mean), keyby = name] %>% 
    column_to_rownames("name") 
  #if(length(subtype)>0){
  #  dat_meta <- meta %>% filter(Group%in%subtype)
  #}else{
    dat_meta <- meta
  #}
  sid <- intersect(dat_meta$SampleID, colnames(dat_assay))
  dat_meta.cln <- dat_meta %>% filter(SampleID%in%sid) %>%
    column_to_rownames("SampleID")
  dat_assay.cln <- dat_assay %>% rownames_to_column("tmp") %>%
    dplyr::select(c(tmp, rownames(dat_meta.cln))) %>%
    column_to_rownames("tmp")
  #dat_meta.cln$SampleID == colnames(dat_assay.cln)
  exprs <- as.matrix(dat_assay.cln)
  adf <-  new("AnnotatedDataFrame", data=dat_meta.cln)
  experimentData <- new("MIAME",
        name="Jin Chao", lab="Gong gdl Lab",
        contact="dong_ming@grmh-gdl.cn",
        title="Heart-failure Experiment",
        abstract="The gene ExpressionSet",
        url="www.grmh-gdl.cn",
        other=list(notes="Created from text files"))
  expressionSet <- new("ExpressionSet", exprs=exprs,
                       phenoData=adf, 
                       experimentData=experimentData)
  
  return(expressionSet)
}
gene_expr_set <- get_expr_Set(prof, phen)
​
# choose gene_set 
gene_set_KEGG <- gene_set[grep("^KEGG", names(gene_set))]
​
# ssgsea by GSVA packages
heartfailure_ssgsea <- gsva(gene_expr_set, 
                               gene_set_KEGG,
                               method="ssgsea", 
                               min.sz=5, 
                               max.sz=500,
                               kcdf="Poisson")
​
exprs(heartfailure_ssgsea) %>% t() %>% data.frame() %>% rownames_to_column("tmp") %>% arrange(tmp) %>% column_to_rownames("tmp") %>% t() %>% data.frame() -> dat2
​
# heatmap 
library(pheatmap)
library(RColorBrewer)
pheatmap(mat = dat2[c(1:20), ], 
         color = colorRampPalette(brewer.pal(9, "YlOrBr"))(255), 
         scale = "row", # Scale genes to Z-score (how many standard deviations)
         # annotation_col = annotation_col, # Add multiple annotations to the samples
         # annotation_colors = ann_colors,# Change the default colors of the annotations
         cluster_row = FALSE, 
         #cluster_cols = FALSE,
         fontsize = 10, # Make fonts smaller
         cellwidth = 15, # Make the cells wider
         show_colnames = T)

Reference

  1. RNAseq-workflow;
  2. 超精华生信ID总结

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Installating Software
  • The Folder Structure
  • Download Host Genome
  • The Procedures of Analysis pipeline
    • Step1: Quality Control by Fastqc
      • Step2: Removing Low Quality Sequences with Trim_Galore
        • Step3: Removing rRNA Sequences with SortMeRNA
          • Step4: Aligning to Genome with STAR-aligner
            • Step5: Summarizing Gene Counts with featureCounts (subread)
              • Step6: Generating analysis report with multiqc
                • Step7: Importing Gene Counts into R/Rstudio
                  • Step8: Annotate Gene Symbols
                    • Step9: Plotting Gene Expression Data
                      • Step10: Finding Pathways from Differential Expressed Genes
                        • Step11: Plotting KEGG Pathways
                          • Step12: Single Sample Gene-Set Enrichment Analysis
                          • Reference
                          领券
                          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档