前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >独家揭秘丨GreatSQL 没开Binlog时多线程插入数据性能劣化之谜

独家揭秘丨GreatSQL 没开Binlog时多线程插入数据性能劣化之谜

作者头像
GreatSQL社区
发布2024-07-26 19:00:35
220
发布2024-07-26 19:00:35
举报
文章被收录于专栏:GreatSQL出品技术文章

* GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源。 一、问题发现 在一次数据迁移中,用到了INSERT INTO t1 SELECT * FROM t2这样的 SQL 用来搬迁大表,为了提高插入效率关闭了Binlog,考虑用多线程来插入提高速度。表的类型信息和插入效率如下所示。 测试环境:

  • Linux node-76-11 4.19.90-17.ky10.aarch64,128核CPU,512G内存。

GreatSQL参数配置如下(为降低 I/O 因素影响,关闭 Binlog): #**********************Performance********************* #******connect max_connections=10000 max_connect_errors=1000000 open_files_limit=65535 back_log=1500 table_definition_cache=10000 thread_stack=256K thread_cache_size=3000 #******session sort_buffer_size=4M join_buffer_size=4M read_buffer_size=4M read_rnd_buffer_size=4M bulk_insert_buffer_size=64M tmp_table_size=64M max_heap_table_size=64M net_buffer_length=16K max_allowed_packet=1G #******timeout lock_wait_timeout=600 connect_timeout=10 interactive_timeout=31536000 wait_timeout=31536000 net_read_timeout=86400 net_write_timeout=86400 net_retry_count=10 #**********************InnoDB************************** transaction_isolation=READ-COMMITTED innodb_buffer_pool_size=200G innodb_buffer_pool_instances=16 innodb_max_dirty_pages_pct=90 innodb_flush_log_at_trx_commit=0 innodb_log_buffer_size=1G innodb_page_cleaners=8 innodb_buffer_pool_dump_at_shutdown=ON innodb_buffer_pool_load_at_startup=ON innodb_buffer_pool_dump_pct=100 innodb_checksum_algorithm=NONE innodb_log_checksums=NO innodb_undo_log_truncate=OFF innodb_change_buffering = none innodb_spin_wait_delay=6 innodb_spin_wait_pause_multiplier=50 innodb_sync_spin_loops=30 #******feature innodb_open_files=65535 innodb_flush_method=O_DIRECT innodb_flush_neighbors=0 innodb_flush_sync=ON innodb_io_capacity=20000 innodb_io_capacity_max=40000 innodb_lru_scan_depth=9000 innodb_lock_wait_timeout=30 innodb_print_all_deadlocks=ON innodb_online_alter_log_max_size=4G innodb_thread_concurrency=0 innodb_read_io_threads=32 innodb_write_io_threads=32 innodb_doublewrite=ON innodb_doublewrite_pages=64 innodb_adaptive_hash_index=OFF innodb_status_file=OFF 1、窄表 + 有自增主键 greatsql> CREATE TABLE t1 ( c1 int invisible auto_increment primary key, c2 int, str1 int DEFAULT(100) NOT NULL, str2 int DEFAULT(100) NOT NULL, str3 int DEFAULT(100) NOT NULL, str4 int DEFAULT(100) NOT NULL ) engine=InnoDB; greatsql> CREATE TABLE t2 LIKE t1; 行平均长度约 30 字节 行数插入sql线程数总用时解释1000万行insert into t2 select * from t1;单线程1 min 46.47 sec 1000万行insert into t2 select * from t1;21 min 15.45 sec 1000万行insert into t2 select * from t1;655.74 sec 1000万行insert into t2 select * from t1;1045.34 sec 1000万行insert into t2 select * from t1;1643.78 sec最佳1000万行insert into t2 select * from t1;21 min 11.62 sec 1000万行insert into t2 select * from t1;61 min 2.53 sec 1000万行insert into t2 select * from t1;101 min 0.55 sec 1000万行insert into t2 select * from t1;1655.46 sec 1000万行insert into t2 select * from t1;21 min 24.13 sec 1000万行insert into t2 select * from t1;61 min 14.43 sec 1000万行insert into t2 select * from t1;101 min 10.64 sec 2、中等宽度表 + 有自增主键 greatsql> CREATE TABLE t1 ( c1 int invisible auto_increment primary key, c2 int, str1 varchar(512) CHARACTER SET latin1 DEFAULT(repeat('a',512)) NOT NULL ) engine=InnoDB; greatsql> CREATE TABLE t2 LIKE t1; 行平均长度约 500多字节 行数插入sql线程数总用时解释1000万行insert into t2 select * from t1;单线程4 min 30.41 sec 1000万行insert into t2 select * from t1;24 min 36.58 sec效率无提升1000万行insert into t2 select * from t1;64 min 46.58 sec效率无提升1000万行insert into t2 select * from t1;104 min 50.43 sec效率无提升1000万行insert into t2 select * from t1;24 min 26.28 sec效率无提升1000万行insert into t2 select * from t1;64 min 38.84 sec效率无提升1000万行insert into t2 select * from t1;104 min 49.42 sec效率无提升1000万行insert into t2 select * from t1;24 min 25.67 sec效率无提升1000万行insert into t2 select * from t1;64 min 40.42 sec效率无提升1000万行insert into t2 select * from t1;104 min 46.70 sec效率无提升 3、宽表 + 有自增主键 greatsql> CREATE TABLE t1 ( c1 int invisible auto_increment primary key, c2 int, str1 varchar(1024) CHARACTER SET latin1 DEFAULT(repeat('a1',512)) NOT NULL, str2 varchar(1024) CHARACTER SET latin1 DEFAULT(repeat('b2',512)) NOT NULL, str3 varchar(1024) CHARACTER SET latin1 DEFAULT(repeat('c3',512)) NOT NULL, str4 varchar(1024) CHARACTER SET latin1 DEFAULT(repeat('c3',512)) NOT NULL ) engine=InnoDB; greatsql> CREATE TABLE t2 LIKE t1; 行平均长度约 5000多字节 行数插入sql线程数总用时/s解释100万行insert into t2 select * from t1;单线程4 min 32.90 sec 100万行insert into t2 select * from t1;24 min 52.36 sec性能劣化100万行insert into t2 select * from t1;24 min 52.31 sec性能劣化100万行insert into t2 select * from t1;65 min 36.07 sec性能劣化100万行insert into t2 select * from t1;24 min 48.34 sec性能劣化 4、窄表 + 无主键(GIPKs关) greatsql> CREATE TABLE t1 ( c1 int invisible auto_increment primary key, c2 int, str1 int DEFAULT(100) NOT NULL, str2 int DEFAULT(100) NOT NULL, str3 int DEFAULT(100) NOT NULL, str4 int DEFAULT(100) NOT NULL ) engine=InnoDB; greatsql> CREATE TABLE t2 ( c2 int, str1 int DEFAULT(100) NOT NULL, str2 int DEFAULT(100) NOT NULL, str3 int DEFAULT(100) NOT NULL, str4 int DEFAULT(100) NOT NULL ) engine=InnoDB; 行平均宽度约 30 字节,没用 GIPKs 特性 行数插入sql线程数总用时解释1000万行insert into t2 select * from t1;单线程1 min 29.08 sec 1000万行insert into t2 select * from t1;21 min 38.84 sec性能劣化1000万行insert into t2 select * from t1;62 min 18.88 sec性能劣化1000万行insert into t2 select * from t1;102 min 14.51 sec性能劣化1000万行insert into t2 select * from t1;21 min 35.96 sec性能劣化1000万行insert into t2 select * from t1;62 min 3.55 sec性能劣化1000万行insert into t2 select * from t1;102 min 1.52 sec性能劣化 5、结论 从上面的测试结果可以看出,无主键表并发插入劣化严重,有主键的情况下,窄表的并发性能提升效果好,但是对于宽表反而会造成劣化。 二、问题调查过程 1、首先调查无主键的情况下长数据造成性能劣化的情况。用perf查看造成性能劣化的瓶颈在哪里。 + 12.55% 0.01% mysqld mysqld [.] lock_clust_rec_read_check_and_lock + 12.34% 0.13% mysqld [kernel.kallsyms] [k] x64_sys_call + 12.03% 0.01% mysqld mysqld [.] Buf_fetch<Buf_fetch_normal>::mtr_add_page + 11.92% 0.01% mysqld mysqld [.] btr_cur_ins_lock_and_undo + 11.27% 0.19% mysqld [kernel.kallsyms] [k] __x64_sys_futex - 11.18% 11.11% mysqld mysqld [.] ut_delay 10.89% start_thread pfs_spawn_thread handle_connection do_command dispatch_command dispatch_sql_command mysql_execute_command Sql_cmd_dml::execute Sql_cmd_dml::execute_inner Query_expression::execute - Query_expression::ExecuteIteratorQuery - 10.75% Query_result_insert::send_data write_record handler::ha_write_row ha_innobase::write_row row_insert_for_mysql row_insert_for_mysql_using_ins_graph row_ins_step row_ins row_ins_index_entry_step row_ins_index_entry row_ins_clust_index_entry - row_ins_clust_index_entry_low - 10.16% btr_pcur_t::open - btr_cur_search_to_nth_level - 10.10% buf_page_get_gen - 10.08% Buf_fetch<Buf_fetch_normal>::single_page - 10.07% Buf_fetch<Buf_fetch_normal>::mtr_add_page rw_lock_x_lock_gen - pfs_rw_lock_x_lock_func - 10.07% rw_lock_x_lock_func ut_delay + 11.08% 0.21% mysqld [kernel.kallsyms] [k] do_futex + 10.90% 0.02% mysqld mysqld [.] rw_lock_x_lock_func + 10.90% 0.00% mysqld mysqld [.] pfs_rw_lock_x_lock_func + 10.90% 0.01% mysqld mysqld [.] rw_lock_x_lock_gen + 9.44% 0.01% mysqld mysqld [.] locksys::owns_page_shard + 9.39% 0.05% mysqld mysqld [.] locksys::Latches::owns_page_shard + 9.29% 0.64% mysqld mysqld [.] PolicyMutex<TTASEventMutex<GenericPolicy> >::trylock + 7.66% 0.02% mysqld mysqld [.] locksys::rec_queue_latch_and_validate + 7.65% 0.17% mysqld mysqld [.] rw_lock_debug_mutex_exit + 7.39% 0.07% mysqld mysqld [.] trx_undo_report_row_operation + 7.17% 0.01% mysqld mysqld [.] buf_pool_validate_instance + 7.17% 0.00% mysqld mysqld [.] buf_validate - 6.63% 5.87% mysqld mysqld [.] unlikely - 5.84% start_thread pfs_spawn_thread handle_connection do_command dispatch_command dispatch_sql_command mysql_execute_command Sql_cmd_dml::execute Sql_cmd_dml::execute_inner Query_expression::execute - Query_expression::ExecuteIteratorQuery - 4.44% Query_result_insert::send_data write_record handler::ha_write_row ha_innobase::write_row - row_insert_for_mysql - 4.43% row_insert_for_mysql_using_ins_graph - 4.42% row_ins_step - 4.41% row_ins - 4.41% row_ins_index_entry_step - 4.35% row_ins_index_entry row_ins_clust_index_entry - row_ins_clust_index_entry_low - 1.89% btr_pcur_t::open - btr_cur_search_to_nth_level - 1.08% page_cur_search_with_match 0.52% dtuple_t::compare - 1.87% btr_cur_optimistic_insert 1.13% page_cur_tuple_insert 0.56% btr_cur_ins_lock_and_undo + 1.40% TableScanIterator::Read 0.76% unlikely + 6.38% 0.45% mysqld [kernel.kallsyms] [k] futex_wait + 5.88% 0.02% mysqld mysqld [.] Buf_fetch_normal::get + 5.76% 0.01% mysqld mysqld [.] lock_rec_lock 可以看到多线程数据插入时候,在无主键的情况下频繁的索引分裂影响性能,所以导致性能劣化严重。 那么有自增主键的情况下性能是什么情况呢? 看一下有自增主键的情况下性能情况,在有自增主键的时候与上面无主键的性能瓶颈处差不多,但是没有那么严重的频繁的索引分裂的性能问题。 + 10.16% 0.67% mysqld mysqld [.] PolicyMutex<TTASEventMutex<GenericPolicy> >::trylock + 9.25% 0.03% mysqld mysqld [.] trx_undo_report_row_operation + 8.49% 0.31% mysqld [kernel.kallsyms] [k] futex_wait + 7.77% 0.00% mysqld libstdc++.so.6.0.32 [.] 0x00007ffff7958793 + 7.59% 0.17% mysqld mysqld [.] rw_lock_debug_mutex_exit - 7.30% 6.87% mysqld mysqld [.] unlikely 6.58% start_thread pfs_spawn_thread handle_connection do_command dispatch_command dispatch_sql_command mysql_execute_command Sql_cmd_dml::execute Sql_cmd_dml::execute_inner Query_expression::execute - Query_expression::ExecuteIteratorQuery - 5.01% Query_result_insert::send_data - 5.00% write_record handler::ha_write_row - ha_innobase::write_row - 4.99% row_insert_for_mysql - row_insert_for_mysql_using_ins_graph - 4.96% row_ins_step - row_ins - 4.95% row_ins_index_entry_step - 4.91% row_ins_index_entry row_ins_clust_index_entry - row_ins_clust_index_entry_low - 2.63% btr_cur_optimistic_insert - 1.35% page_cur_tuple_insert 0.67% page_cur_insert_rec_low - 0.87% btr_cur_ins_lock_and_undo 0.59% trx_undo_report_row_operation - 1.22% btr_pcur_t::open 1.20% btr_cur_search_to_nth_level - 0.55% btr_cur_pessimistic_insert - 0.55% btr_page_split_and_insert 0.51% page_validate + 1.57% TableScanIterator::Read + 7.06% 0.03% mysqld mysqld [.] mtr_t::commit + 7.02% 0.00% mysqld mysqld [.] buf_validate + 7.01% 0.02% mysqld mysqld [.] buf_pool_validate_instance 我们知道对自增主键插入新数据时,是先获取一个区段锁,这样可以避免频繁持锁造成的性能劣化。而无显式定义主键表(其他可用于聚集索引的非空唯一索引也没有)时,会采用实例级的 DB_ROW_ID 作为该表的聚集索引,这个 DB_ROW_ID 每插入一行都需要请求加锁,因此会比自增主键表更加耗时。所以上面可以看到无主键表的多线程插入性能反而比单线程劣化。 2、接着调查有主键的情况下宽表造成性能劣化的情况。用perf查看造成性能劣化的瓶颈在哪里。 + 12.66% 0.05% mysqld [kernel.kallsyms] [k] do_syscall_64 - 12.65% 12.30% mysqld mysqld [.] ut_delay - 7.46% start_thread pfs_spawn_thread handle_connection do_command dispatch_command dispatch_sql_command mysql_execute_command Sql_cmd_dml::execute Sql_cmd_dml::execute_inner Query_expression::execute - Query_expression::ExecuteIteratorQuery - 7.27% Query_result_insert::send_data write_record handler::ha_write_row ha_innobase::write_row row_insert_for_mysql row_insert_for_mysql_using_ins_graph row_ins_step row_ins row_ins_index_entry_step row_ins_index_entry row_ins_clust_index_entry - row_ins_clust_index_entry_low - 4.53% btr_pcur_t::open - btr_cur_search_to_nth_level - 2.52% mtr_t::sx_lock rw_lock_sx_lock_gen - pfs_rw_lock_sx_lock_func + 2.52% rw_lock_sx_lock_func - 1.85% buf_page_get_gen - 1.84% Buf_fetch<Buf_fetch_normal>::single_page - 1.81% Buf_fetch<Buf_fetch_normal>::mtr_add_page rw_lock_s_lock_gen rw_lock_s_lock_func rw_lock_s_lock_spin ut_delay - 2.07% btr_height_get btr_root_block_get btr_block_get btr_block_get_func - buf_page_get_gen - 2.06% Buf_fetch<Buf_fetch_normal>::single_page - 2.05% Buf_fetch<Buf_fetch_normal>::mtr_add_page rw_lock_s_lock_gen rw_lock_s_lock_func rw_lock_s_lock_spin ut_delay 0.50% btr_cur_optimistic_insert - 4.85% 0x7ffff7958793 - 4.70% std::thread::_State_impl<std::thread::_Invoker<std::tuple<Detached_thread, void (*)(unsigned long), unsigned long> > >::_M_run std::thread::_Invoker<std::tuple<Detached_thread, void (*)(unsigned long), unsigned long> >::operator() std::thread::_Invoker<std::tuple<Detached_thread, void (*)(unsigned long), unsigned long> >::_M_invoke<0ul, 1ul, 2ul> std::__invoke<Detached_thread, void (*)(unsigned long), unsigned long> std::__invoke_impl<void, Detached_thread, void (*)(unsigned long), unsigned long> Detached_thread::operator()<void (*)(unsigned long), unsigned long> std::_Bind<void (*(unsigned long))(unsigned long)>::operator()<, void> std::_Bind<void (*(unsigned long))(unsigned long)>::__call<void, , 0ul> std::__invoke<void (*&)(unsigned long), unsigned long&> - std::__invoke_impl<void, void (*&)(unsigned long), unsigned long&> - 4.53% io_handler_thread - fil_aio_wait - 4.14% buf_page_io_complete - 1.48% buf_flush_write_complete - 1.48% mutex_enter_inline<PolicyMutex<TTASEventMutex<GenericPolicy> > > PolicyMutex<TTASEventMutex<GenericPolicy> >::enter TTASEventMutex<GenericPolicy>::enter TTASEventMutex<GenericPolicy>::spin_and_try_lock TTASEventMutex<GenericPolicy>::is_free ut_delay - 1.38% ibuf_merge_or_delete_for_page - 1.19% ibuf_bitmap_get_map_page buf_page_get_gen Buf_fetch<Buf_fetch_normal>::single_page Buf_fetch<Buf_fetch_normal>::mtr_add_page rw_lock_x_lock_gen pfs_rw_lock_x_lock_func rw_lock_x_lock_func ut_delay - 1.04% mutex_enter_inline<PolicyMutex<TTASEventMutex<GenericPolicy> > > PolicyMutex<TTASEventMutex<GenericPolicy> >::enter TTASEventMutex<GenericPolicy>::enter TTASEventMutex<GenericPolicy>::spin_and_try_lock TTASEventMutex<GenericPolicy>::is_free ut_delay + 12.57% 0.41% mysqld [kernel.kallsyms] [k] x64_sys_call + 9.93% 0.00% mysqld mysqld [.] buf_validate + 9.91% 0.06% mysqld mysqld [.] buf_pool_validate_instance + 9.73% 0.11% mysqld [kernel.kallsyms] [k] __x64_sys_futex + 9.72% 0.30% mysqld mysqld [.] rw_lock_debug_mutex_enter + 9.61% 0.13% mysqld [kernel.kallsyms] [k] do_futex + 8.23% 0.03% mysqld mysqld [.] TableScanIterator::Read + 8.20% 0.02% mysqld mysqld [.] handler::ha_rnd_next + 8.17% 0.00% mysqld mysqld [.] ha_innobase::rnd_next + 8.17% 0.00% mysqld mysqld [.] ha_innobase::general_fetch + 8.08% 0.05% mysqld mysqld [.] row_search_mvcc + 7.75% 0.02% mysqld mysqld [.] buf_page_t::Latching_rules_helpers::assert_latches_let_distinguish + 7.71% 0.03% mysqld mysqld [.] buf_page_t::is_io_fix_write + 7.41% 0.04% mysqld mysqld [.] ut::Stateful_latching_rules<buf_io_fix, 3ul>::assert_latches_let_distinguish + 7.10% 0.01% mysqld mysqld [.] btr_cur_optimistic_insert + 6.98% 0.02% mysqld mysqld [.] Buf_fetch_normal::get + 6.76% 0.29% mysqld mysqld [.] PolicyMutex<TTASEventMutex<GenericPolicy> >::trylock + 6.50% 0.02% mysqld mysqld [.] Buf_fetch<Buf_fetch_normal>::mtr_add_page + 6.15% 0.04% mysqld mysqld [.] ut::Stateful_latching_rules<buf_io_fix, 3ul>::assert_latches_let_distinguish + 6.11% 0.02% mysqld mysqld [.] ut::Stateful_latching_rules<buf_io_fix, 3ul>::can_leave + 5.92% 0.27% mysqld [kernel.kallsyms] [k] futex_wait + 5.89% 0.11% mysqld mysqld [.] rw_lock_debug_mutex_exit + 5.89% 0.01% mysqld mysqld [.] btr_block_get + 5.88% 0.00% mysqld mysqld [.] btr_block_get_func + 5.74% 0.02% mysqld mysqld [.] rw_lock_s_lock_func + 5.50% 0.01% mysqld mysqld [.] PolicyMutex<TTASEventMutex<GenericPolicy> >::enter - 5.49% 4.80% mysqld mysqld [.] unlikely - 3.89% start_thread pfs_spawn_thread handle_connection do_command dispatch_command dispatch_sql_command mysql_execute_command Sql_cmd_dml::execute Sql_cmd_dml::execute_inner Query_expression::execute - Query_expression::ExecuteIteratorQuery - 3.37% Query_result_insert::send_data write_record handler::ha_write_row ha_innobase::write_row row_insert_for_mysql row_insert_for_mysql_using_ins_graph row_ins_step row_ins - row_ins_index_entry_step - 3.33% row_ins_index_entry row_ins_clust_index_entry - row_ins_clust_index_entry_low - 1.34% btr_pcur_t::open - 1.34% btr_cur_search_to_nth_level 0.87% page_cur_search_with_match - 1.26% btr_cur_pessimistic_insert 1.19% btr_page_split_and_insert + 0.52% TableScanIterator::Read 0.90% 0x7ffff7958793 0.69% unlikely 可以看到除了上面第一点提到的索引分裂的影响外,还增加了页分裂以及页读写相关的 I/O 操作影响性能,宽表情况下对于读写性能比短数据更加依赖机器的性能和配置,并且会随着写入数据的增加降低写入效率。 同样的,看看单线程情况下宽表的 perf 情况。 + 8.05% 0.02% mysqld mysqld [.] ut::Stateful_latching_rules<buf_io_fix, 3ul>::can_leave + 7.95% 0.00% mysqld mysqld [.] mutex_enter_inline<PolicyMutex<TTASEventMutex<GenericPolicy> > > + 7.81% 0.03% mysqld [kernel.kallsyms] [k] x64_sys_call - 7.50% 7.50% mysqld mysqld [.] ut_delay - 7.41% 0x7ffff7958793 - 7.36% std::thread::_State_impl<std::thread::_Invoker<std::tuple<Detached_thread, void (*)(unsigned long), unsigned long> > >::_M_run std::thread::_Invoker<std::tuple<Detached_thread, void (*)(unsigned long), unsigned long> >::operator() std::thread::_Invoker<std::tuple<Detached_thread, void (*)(unsigned long), unsigned long> >::_M_invoke<0ul, 1ul, 2ul> std::__invoke<Detached_thread, void (*)(unsigned long), unsigned long> std::__invoke_impl<void, Detached_thread, void (*)(unsigned long), unsigned long> Detached_thread::operator()<void (*)(unsigned long), unsigned long> std::_Bind<void (*(unsigned long))(unsigned long)>::operator()<, void> std::_Bind<void (*(unsigned long))(unsigned long)>::__call<void, , 0ul> std::__invoke<void (*&)(unsigned long), unsigned long&> - std::__invoke_impl<void, void (*&)(unsigned long), unsigned long&> - 7.34% io_handler_thread fil_aio_wait - buf_page_io_complete - 5.01% buf_flush_write_complete mutex_enter_inline<PolicyMutex<TTASEventMutex<GenericPolicy> > > PolicyMutex<TTASEventMutex<GenericPolicy> >::enter TTASEventMutex<GenericPolicy>::enter TTASEventMutex<GenericPolicy>::spin_and_try_lock TTASEventMutex<GenericPolicy>::is_free ut_delay - 1.25% ibuf_merge_or_delete_for_page ibuf_bitmap_get_map_page buf_page_get_gen Buf_fetch<Buf_fetch_normal>::single_page Buf_fetch<Buf_fetch_normal>::mtr_add_page rw_lock_x_lock_gen pfs_rw_lock_x_lock_func rw_lock_x_lock_func ut_delay - 1.08% mutex_enter_inline<PolicyMutex<TTASEventMutex<GenericPolicy> > > PolicyMutex<TTASEventMutex<GenericPolicy> >::enter TTASEventMutex<GenericPolicy>::enter TTASEventMutex<GenericPolicy>::spin_and_try_lock TTASEventMutex<GenericPolicy>::is_free ut_delay + 7.30% 0.04% mysqld mysqld [.] buf_page_t::Latching_rules_helpers::assert_latches_let_distinguish + 4.37% 0.00% mysqld mysqld [.] Fil_system::flush_file_spaces - 4.14% 3.88% mysqld mysqld [.] unlikely - 2.75% start_thread pfs_spawn_thread handle_connection do_command dispatch_command dispatch_sql_command mysql_execute_command Sql_cmd_dml::execute Sql_cmd_dml::execute_inner Query_expression::execute - Query_expression::ExecuteIteratorQuery - 2.46% Query_result_insert::send_data write_record handler::ha_write_row ha_innobase::write_row row_insert_for_mysql row_insert_for_mysql_using_ins_graph row_ins_step - row_ins - 2.44% row_ins_index_entry_step - 2.41% row_ins_index_entry row_ins_clust_index_entry - row_ins_clust_index_entry_low - 0.97% btr_pcur_t::open - btr_cur_search_to_nth_level 0.55% page_cur_search_with_match - 0.80% btr_cur_pessimistic_insert 0.70% btr_page_split_and_insert - 1.13% 0x7ffff7958793 - 1.02% std::thread::_State_impl<std::thread::_Invoker<std::tuple<Detached_thread, void (*)(unsigned long), unsigned long> > >::_M_run std::thread::_Invoker<std::tuple<Detached_thread, void (*)(unsigned long), unsigned long> >::operator() std::thread::_Invoker<std::tuple<Detached_thread, void (*)(unsigned long), unsigned long> >::_M_invoke<0ul, 1ul, 2ul> std::__invoke<Detached_thread, void (*)(unsigned long), unsigned long> std::__invoke_impl<void, Detached_thread, void (*)(unsigned long), unsigned long> Detached_thread::operator()<void (*)(unsigned long), unsigned long> std::_Bind<void (*(unsigned long))(unsigned long)>::operator()<, void> std::_Bind<void (*(unsigned long))(unsigned long)>::__call<void, , 0ul> std::__invoke<void (*&)(unsigned long), unsigned long&> - std::__invoke_impl<void, void (*&)(unsigned long), unsigned long&> - 0.70% io_handler_thread - fil_aio_wait - 0.65% buf_page_io_complete buf_flush_write_complete dblwr::write_complete Double_write::write_complete fil_flush_file_spaces Fil_system::flush_file_spaces - Fil_shard::flush_file_spaces + 0.65% Fil_shard::acquire + 3.97% 0.58% mysqld mysqld [.] Fil_shard::flush_file_spaces 对比多线程和单线程的堆栈信息,可以看到多线程下抢 I/O 资源情况变严重,同时索引分裂和页分裂更严重,要花更多时间进行页位置比较、计算数据占用的空间和插入,另外由于抢锁导致多线程性能劣化更严重。 三、问题解决方案 通过上面分析发现,要想保证多线程插入速度比单线程快需要满足一定的条件:

  1. 1、目标表有主键,当主键列没有设置自增属性的情况下,每个线程间的主键值需要是离散且单个线程内主键值需要连续,这是为了保证索引插入的性能最高。比如线程1主键值为[1-1000],线程2主键值为[10000-11000],线程3主键值为[30000-31000]这样排列效率会比[1-3000]分三个线程高很多。
  2. 2、如果目标表主键是自增主键的话,因为无法定义自增主键的值,只能按照插入时候确定键值,因此自增主键会比非自增主键多线程离散值性能慢,但是因为自增主键持有的是区段锁,因此不会频繁持锁方面性能又会比非自增主键好。实际使用的时候还是要看源表的数据分布情况以及目标表结构来决定要怎么分配多线程的插入主键值。
  3. 3、目标表是宽表时,从上面的测试数据来看单行数据超过 520Bytes 多线程就开始劣化了,因此多线程插入只针对窄表有效。

四、问题总结 一般我们都认为多线程插入数据肯定比单线程插入快,但是通过本次的测试和分析可以看到实际情况需要结合数据库参数配置、索引、存储页以及磁盘的 I/O 性能等一起看,还要看源表主键值分布情况和目标表的表结构,并不是所有多线程插入都能产生更好的效果节省时间,有时候反而可能多线程比单线程更耗时间以及资源。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-07-19,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 GreatSQL社区 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • * GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源。 一、问题发现 在一次数据迁移中,用到了INSERT INTO t1 SELECT * FROM t2这样的 SQL 用来搬迁大表,为了提高插入效率关闭了Binlog,考虑用多线程来插入提高速度。表的类型信息和插入效率如下所示。 测试环境:
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档