前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >LSTM模型

LSTM模型

作者头像
用户10950404
发布2024-07-30 13:30:59
830
发布2024-07-30 13:30:59
举报
文章被收录于专栏:人工智能

前言 🏷️在介绍LSTM模型之前,我们再次见一下CNN是什么?RNN主要用于序列处理,比如机器翻译,这种输入输出序列之间具有高度的相关性,RNN可以model这种关系,总结一下,按照输入输出的类型,RNN可以做以下几个事情:

  • one-to-one: CNN
  • one-to-many: Image Caption
  • many-to-one: MNIST(glimpse输入)字符分类
  • many-to-many: 机器翻译

🏷️接下来我们先简单介绍传统的RNN模型,了解其优缺点


1 、传统RNN优缺点

1 传统RNN的优势:

  • 由于内部结构简单, 对计算资源要求低, 相比之后我们要学习的RNN变体:LSTM和GRU模型参数总量少了很多, 在短序列任务上性能和效果都表现优异.

2 传统RNN的缺点:

  • 传统RNN在解决长序列之间的关联时, 通过实践,证明经典RNN表现很差, 原因是在进行反向传播的时候, 过长的序列导致梯度的计算异常, 发生梯度消失或爆炸.

3 梯度消失或爆炸介绍

根据反向传播算法和链式法则, 梯度的计算可以简化为以下公式

Dn=σ′(z1)w1⋅σ′(z2)w2⋅⋯⋅σ′(zn)wn𝐷𝑛=𝜎′(𝑧1)𝑤1⋅𝜎′(𝑧2)𝑤2⋅⋯⋅𝜎′(𝑧𝑛)𝑤𝑛

  • 其中sigmoid的导数值域是固定的, 在[0, 0.25]之间, 而一旦公式中的w也小于1, 那么通过这样的公式连乘后, 最终的梯度就会变得非常非常小, 这种现象称作梯度消失. 反之, 如果我们人为的增大w的值, 使其大于1, 那么连乘够就可能造成梯度过大, 称作梯度爆炸.
  • 梯度消失或爆炸的危害:
    • 如果在训练过程中发生了梯度消失,权重无法被更新(梯度消失概念以及权重的跟更新的知识在机器学习中已经涉及),最终导致训练失败; 梯度爆炸所带来的梯度过大,大幅度更新网络参数,在极端情况下,结果会溢出(NaN值).

2、LSTM介绍

LSTM(Long Short-Term Memory)也称长短时记忆结构, 它是传统RNN的变体, 与经典RNN相比能够有效捕捉长序列之间的语义关联, 缓解梯度消失或爆炸现象. 同时LSTM的结构更复杂, 它的核心结构可以分为四个部分去解析:

  • 遗忘门
  • 输入门
  • 细胞状态
  • 输出门

3、LSTM的内部结构图

3.1 LSTM结构分析

  • 结构解释图:

黄色方块:表示一个神经网络层(Neural Network Layer); 粉色圆圈:表示按位操作或逐点操作(pointwise operation),例如向量加和、向量乘积等; 单箭头:表示信号传递(向量传递); 合流箭头:表示两个信号的连接(向量拼接); 分流箭头:表示信号被复制后传递到2个不同的地方

  • 遗忘门部分结构图与计算公式:
  • 遗忘门结构分析:
    • 与传统RNN的内部结构计算非常相似, 首先将当前时间步输入x(t)与上一个时间步隐含状态h(t-1)拼接, 得到[x(t), h(t-1)], 然后通过一个全连接层做变换, 最后通过sigmoid函数进行激活得到f(t), 我们可以将f(t)看作是门值, 好比一扇门开合的大小程度, 门值都将作用在通过该扇门的张量, 遗忘门门值将作用的上一层的细胞状态上, 代表遗忘过去的多少信息, 又因为遗忘门门值是由x(t), h(t-1)计算得来的, 因此整个公式意味着根据当前时间步输入和上一个时间步隐含状态h(t-1)来决定遗忘多少上一层的细胞状态所携带的过往信息.

🏷️这里面的计算公式,包括接下来我们也要介绍的,有很多与RNN的计算公式相似,我们也可以通过RNN的思想去一步一步理解每一个结构的含义以及作用

  • 遗忘门内部结构过程演示:
  • 激活函数sigmiod的作用:
    • 用于帮助调节流经网络的值, sigmoid函数将值压缩在0和1之间.
  • 输入门部分结构图与计算公式:
  • 输入门结构分析:
    • 我们看到输入门的计算公式有两个, 第一个就是产生输入门门值的公式, 它和遗忘门公式几乎相同, 区别只是在于它们之后要作用的目标上. 这个公式意味着输入信息有多少需要进行过滤. 输入门的第二个公式是与传统RNN的内部结构计算相同. 对于LSTM来讲, 它得到的是当前的细胞状态, 而不是像经典RNN一样得到的是隐含状态.
  • 输入门内部结构过程演示:
  • 细胞状态更新图与计算公式:
  • 细胞状态更新分析:
    • 细胞更新的结构与计算公式非常容易理解, 这里没有全连接层, 只是将刚刚得到的遗忘门门值与上一个时间步得到的C(t-1)相乘, 再加上输入门门值与当前时间步得到的未更新C(t)相乘的结果. 最终得到更新后的C(t)作为下一个时间步输入的一部分. 整个细胞状态更新过程就是对遗忘门和输入门的应用.
  • 细胞状态更新过程演示:
  • 输出门部分结构图与计算公式:
  • 输出门结构分析:
    • 输出门部分的公式也是两个, 第一个即是计算输出门的门值, 它和遗忘门,输入门计算方式相同. 第二个即是使用这个门值产生隐含状态h(t), 他将作用在更新后的细胞状态C(t)上, 并做tanh激活, 最终得到h(t)作为下一时间步输入的一部分. 整个输出门的过程, 就是为了产生隐含状态h(t).
  • 输出门内部结构过程演示:

3.2 使用Pytorch构建LSTM模型

  • 位置: 在torch.nn工具包之中, 通过torch.nn.LSTM可调用.
  • nn.LSTM类初始化主要参数解释:
    • input_size: 输入张量x中特征维度的大小.
    • hidden_size: 隐层张量h中特征维度的大小.
    • num_layers: 隐含层的数量.
    • bidirectional: 是否选择使用双向LSTM, 如果为True, 则使用; 默认不使用.
  • nn.LSTM类实例化对象主要参数解释:
    • input: 输入张量x.
    • h0: 初始化的隐层张量h.
    • c0: 初始化的细胞状态张量c.
  • nn.LSTM使用示例:
代码语言:javascript
复制
# 定义LSTM的参数含义: (input_size, hidden_size, num_layers)
# 定义输入张量的参数含义: (sequence_length, batch_size, input_size)
# 定义隐藏层初始张量和细胞初始状态张量的参数含义:
# (num_layers * num_directions, batch_size, hidden_size)

>>> import torch.nn as nn
>>> import torch
>>> rnn = nn.LSTM(5, 6, 2)
>>> input = torch.randn(1, 3, 5)
>>> h0 = torch.randn(2, 3, 6)
>>> c0 = torch.randn(2, 3, 6)
>>> output, (hn, cn) = rnn(input, (h0, c0))
>>> output
tensor([[[ 0.0447, -0.0335,  0.1454,  0.0438,  0.0865,  0.0416],
         [ 0.0105,  0.1923,  0.5507, -0.1742,  0.1569, -0.0548],
         [-0.1186,  0.1835, -0.0022, -0.1388, -0.0877, -0.4007]]],
       grad_fn=<StackBackward>)
>>> hn
tensor([[[ 0.4647, -0.2364,  0.0645, -0.3996, -0.0500, -0.0152],
         [ 0.3852,  0.0704,  0.2103, -0.2524,  0.0243,  0.0477],
         [ 0.2571,  0.0608,  0.2322,  0.1815, -0.0513, -0.0291]],

        [[ 0.0447, -0.0335,  0.1454,  0.0438,  0.0865,  0.0416],
         [ 0.0105,  0.1923,  0.5507, -0.1742,  0.1569, -0.0548],
         [-0.1186,  0.1835, -0.0022, -0.1388, -0.0877, -0.4007]]],
       grad_fn=<StackBackward>)
>>> cn
tensor([[[ 0.8083, -0.5500,  0.1009, -0.5806, -0.0668, -0.1161],
         [ 0.7438,  0.0957,  0.5509, -0.7725,  0.0824,  0.0626],
         [ 0.3131,  0.0920,  0.8359,  0.9187, -0.4826, -0.0717]],

        [[ 0.1240, -0.0526,  0.3035,  0.1099,  0.5915,  0.0828],
         [ 0.0203,  0.8367,  0.9832, -0.4454,  0.3917, -0.1983],
         [-0.2976,  0.7764, -0.0074, -0.1965, -0.1343, -0.6683]]],
       grad_fn=<StackBackward>)

3.3 LSTM优缺点

  • LSTM优势: LSTM的门结构能够有效减缓长序列问题中可能出现的梯度消失或爆炸, 虽然并不能杜绝这种现象, 但在更长的序列问题上表现优于传统RNN.
  • LSTM缺点: 由于内部结构相对较复杂, 因此训练效率在同等算力下较传统RNN低很多.

4、小节

LSTM的内部结构可能只通过文字讲述会有些抽象,内部结构相对来说复杂,我们可以通过将其拆分一一分析,我们不难发现他和RNN算法的相同之处,本质都是相同,下节我们介绍复杂度相对来说没有那么复杂的GRU模型

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-07-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 、传统RNN优缺点
    • 1 传统RNN的优势:
      • 2 传统RNN的缺点:
        • 3 梯度消失或爆炸介绍
        • 2、LSTM介绍
        • 3、LSTM的内部结构图
          • 3.1 LSTM结构分析
            • 3.2 使用Pytorch构建LSTM模型
              • 3.3 LSTM优缺点
              • 4、小节
              相关产品与服务
              机器翻译
              机器翻译(Tencent Machine Translation,TMT)结合了神经机器翻译和统计机器翻译的优点,从大规模双语语料库自动学习翻译知识,实现从源语言文本到目标语言文本的自动翻译,目前可支持十余种语言的互译。
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档