
关于中断部分系列篇将用三篇详细说明整个过程.
HalIrqInit开始,到注册中断的LOS_HwiCreate函数,到消费中断函数的 HalIrqHandler,剖析鸿蒙内核实现中断的过程,很像设计模式中的观察者模式. TaskIrqContext过程.在鸿蒙的内核线程就是任务,系列篇中说的任务和线程当一个东西去理解.
一般二种场景下需要切换任务上下文:
TaskIrqContext).OsTickHandler节拍处理函数,检测到任务的时间片用完了,就发起任务的重新调度,切换到新任务运行.TaskContext).本篇说清楚在中断环境下切换(硬切换)的实现过程.
ARM的七种工作模式中,有两个是和中断相关.
此处分析普通中断模式下的任务切换过程.
这张图一定要刻在脑海里,系列篇会多次拿出来,目的是为了能牢记它.

OsIrqHandler执行.#define OS_EXC_IRQ_STACK_SIZE 64 //中断模式栈大小 64个字节
__irq_stack:
.space OS_EXC_IRQ_STACK_SIZE * CORE_NUM
__irq_stack_top:OsIrqHandler汇编代码实现过程,就干了三件事:TaskIrqContextHalIrqHandler,这是个C函数,由汇编调用TaskIrqContext,返回被中断的任务继续执行先看本篇结构体 TaskIrqContext
#define TASK_IRQ_CONTEXT \
unsigned int R0; \
unsigned int R1; \
unsigned int R2; \
unsigned int R3; \
unsigned int R12; \
unsigned int USP; \
unsigned int ULR; \
unsigned int CPSR; \
unsigned int PC;
typedef struct {//任务中断上下文
#if !defined(LOSCFG_ARCH_FPU_DISABLE)
UINT64 D[FP_REGS_NUM]; /* D0-D31 */
UINT32 regFPSCR; /* FPSCR */
UINT32 regFPEXC; /* FPEXC */
#endif
UINT32 resved;
TASK_IRQ_CONTEXT
} TaskIrqContext;typedef struct {//任务上下文,已在任务切换篇中详细说明,放在此处是为了对比
#if !defined(LOSCFG_ARCH_FPU_DISABLE)
UINT64 D[FP_REGS_NUM]; /* D0-D31 */
UINT32 regFPSCR; /* FPSCR */
UINT32 regFPEXC; /* FPEXC */
#endif
UINT32 resved; /* It's stack 8 aligned */
UINT32 regPSR; //保存CPSR寄存器
UINT32 R[GEN_REGS_NUM]; /* R0-R12 */
UINT32 SP; /* R13 */
UINT32 LR; /* R14 */
UINT32 PC; /* R15 */
} TaskContext;TaskContext把17个寄存器全部保存了,TaskIrqContext保存的少些,在栈中并没有保存R4-R11寄存器的值,这说明在整个中断处理过程中,都不会用到R4-R11寄存器.不会用到就不会改变,当然就没必要保存了.这也说明内核开发者的严谨程度,不造成时间和空间上的一丁点浪费.效率的提升是从细节处入手的,每个小地方优化那么一丢丢,整体性能就上来了.TaskIrqContext中有两个变量有点奇怪 unsigned int USP; unsigned int ULR; 指的是用户模式下的SP和LR值, 这个要怎么理解? 因为对一个正运行的任务而言,中断的到来是颗不定时炸弹,无法预知,也无法提前准备,中断一来它立即被打断,压根没有时间去保存现场到自己的栈中,那保存工作只能是放在IRQ栈或者SVC栈中.而IRQ栈非常的小,只有64个字节,16个栈空间,指望不上了,就保存在SVC栈中,SVC模式栈可是有 8K空间的.OsIrqHandler代码中可以看出,鸿蒙内核整个中断的工作其实都是在SVC模式下完成的,而irq的栈只是个过渡栈.具体看汇编代码逐行注解分析.欢迎大家关注公众号<程序猿百晓生>,可以了解到一下知识点。1.OpenHarmony开发基础
2.OpenHarmony北向开发环境搭建
3.鸿蒙南向开发环境的搭建
4.鸿蒙生态应用开发白皮书V2.0 & V3.0
5.鸿蒙开发面试真题(含参考答案)
6.TypeScript入门学习手册
7.OpenHarmony 经典面试题(含参考答案)
8.OpenHarmony设备开发入门【最新版】
9.沉浸式剖析OpenHarmony源代码
10.系统定制指南
11.【OpenHarmony】Uboot 驱动加载流程
12.OpenHarmony构建系统--GN与子系统、部件、模块详解
13.ohos开机init启动流程
14.鸿蒙版性能优化指南
.......OsIrqHandler: @硬中断处理,此时已切换到硬中断栈
SUB LR, LR, #4 @记录译码指令地址,以防切换过程丢失指令
/* push r0-r3 to irq stack */ @irq栈只是个过渡栈
STMFD SP, {R0-R3} @r0-r3寄存器入 irq 栈
SUB R0, SP, #(4 * 4)@r0 = sp - 16,目的是记录{R0-R3}4个寄存器保存的开始位置,届时从R3开始出栈
MRS R1, SPSR @获取程序状态控制寄存器
MOV R2, LR @r2=lr
/* disable irq, switch to svc mode */@超级用户模式(SVC 模式),主要用于 SWI(软件中断)和 OS(操作系统)。
CPSID i, #0x13 @切换到SVC模式,此处一切换,后续指令将在SVC栈运行
@CPSID i为关中断指令,对应的是CPSIE
@TaskIrqContext 开始保存中断现场 ......
/* push spsr and pc in svc stack */
STMFD SP!, {R1, R2} @实际是将 SPSR,和PC入栈对应TaskIrqContext.PC,TaskIrqContext.CPSR,
STMFD SP, {LR} @LR再入栈,SP不自增,如果是用户模式,LR值将被 282行:STMFD SP, {R13, R14}^覆盖
@如果非用户模式,将被 286行:SUB SP, SP, #(2 * 4) 跳过.
AND R3, R1, #CPSR_MASK_MODE @获取CPU的运行模式
CMP R3, #CPSR_USER_MODE @中断是否发生在用户模式
BNE OsIrqFromKernel @非用户模式不用将USP,ULR保存在TaskIrqContext
/* push user sp, lr in svc stack */
STMFD SP, {R13, R14}^ @将用户模式的sp和LR入svc栈
OsIrqFromKernel: @从内核发起中断
/* from svc not need save sp and lr */@svc模式下发生的中断不需要保存sp和lr寄存器值
SUB SP, SP, #(2 * 4) @目的是为了留白给 TaskIrqContext.USP,TaskIrqContext.ULR
@TaskIrqContext.ULR已经在 276行保存了,276行用的是SP而不是SP!,所以此处要跳2个空间
/* pop r0-r3 from irq stack*/
LDMFD R0, {R0-R3} @从R0位置依次出栈
/* push caller saved regs as trashed regs in svc stack */
STMFD SP!, {R0-R3, R12} @寄存器入栈,对应 TaskIrqContext.R0~R3,R12
/* 8 bytes stack align */
SUB SP, SP, #4 @栈对齐 对应TaskIrqContext.resved
/*
* save fpu regs in case in case those been
* altered in interrupt handlers.
*/
PUSH_FPU_REGS R0 @保存fpu regs,以防中断处理程序中的fpu regs被修改。
@TaskIrqContext 结束保存中断现场......
@开始执行真正的中断处理函数了.
#ifdef LOSCFG_IRQ_USE_STANDALONE_STACK @是否使用了独立的IRQ栈
PUSH {R4} @R4先入栈保存,接下来要切换栈,需保存现场
MOV R4, SP @R4=SP
EXC_SP_SET __svc_stack_top, OS_EXC_SVC_STACK_SIZE, R1, R2 @切换到svc栈
#endif
/*BLX 带链接和状态切换的跳转*/
BLX HalIrqHandler /* 调用硬中断处理程序,无参 ,说明HalIrqHandler在svc栈中执行 */
#ifdef LOSCFG_IRQ_USE_STANDALONE_STACK @是否使用了独立的IRQ栈
MOV SP, R4 @恢复现场,sp = R4
POP {R4} @弹出R4
#endif
/* process pending signals */ @处理挂起信号
BL OsTaskProcSignal @跳转至C代码
/* check if needs to schedule */@检查是否需要调度
CMP R0, #0 @是否需要调度,R0为参数保存值
BLNE OsSchedPreempt @不相等,即R0非0,一般是 1
MOV R0,SP @参数
MOV R1,R7 @参数
BL OsSaveSignalContextIrq @跳转至C代码
/* restore fpu regs */
POP_FPU_REGS R0 @恢复fpu寄存器值
ADD SP, SP, #4 @sp = sp + 4
OsIrqContextRestore: @恢复硬中断环境
LDR R0, [SP, #(4 * 7)] @R0 = sp + 7,目的是跳到恢复中断现场TaskIrqContext.CPSR位置,刚好是TaskIrqContext倒数第7的位置.
MSR SPSR_cxsf, R0 @恢复spsr 即:spsr = TaskIrqContext.CPSR
AND R0, R0, #CPSR_MASK_MODE @掩码找出当前工作模式
CMP R0, #CPSR_USER_MODE @是否为用户模式?
@TaskIrqContext 开始恢复中断现场 ......
LDMFD SP!, {R0-R3, R12} @从SP位置依次出栈 对应 TaskIrqContext.R0~R3,R12
@此时已经恢复了5个寄存器,接来下是TaskIrqContext.USP,TaskIrqContext.ULR
BNE OsIrqContextRestoreToKernel @看非用户模式,怎么恢复中断现场.
/* load user sp and lr, and jump cpsr */
LDMFD SP, {R13, R14}^ @出栈,恢复用户模式sp和lr值 即:TaskIrqContext.USP,TaskIrqContext.ULR
ADD SP, SP, #(3 * 4) @跳3个位置,跳过 CPSR ,因为上一句不是 SP!,所以跳3个位置,刚好到了保存TaskIrqContext.PC的位置
/* return to user mode */
LDMFD SP!, {PC}^ @回到用户模式,整个中断过程完成
@TaskIrqContext 结束恢复中断现场(用户模式下) ......
OsIrqContextRestoreToKernel:@从内核恢复中断
/* svc mode not load sp */
ADD SP, SP, #4 @其实是跳过TaskIrqContext.USP,因为在内核模式下并没有保存这个值,翻看 287行
LDMFD SP!, {LR} @弹出LR
/* jump cpsr and return to svc mode */
ADD SP, SP, #4 @跳过cpsr
LDMFD SP!, {PC}^ @回到svc模式,整个中断过程完成
@TaskIrqContext 结束恢复中断现场(内核模式下) ......逐句解读
OsIrqFromKernel硬件会自动切换到__irq_stack执行SUB LR, LR, #4 在arm执行过程中一般分为取指,译码,执行阶段,而PC是指向取指,正在执行的指令为 PC-8 ,译码指令为PC-4.当中断发生时硬件自动执行 mov lr pc, 中间的PC-4译码指令因为没有寄存器去记录它,就会被丢失掉.所以SUB LR, LR, #4 的结果是lr = PC -4 ,定位到了被中断时译码指令,将在栈中保存这个位置,确保回来后能继续执行.STMFD SP, {R0-R3} 当前4个寄存器入__irq_stack保存SUB R0, SP, #(4 * 4) 因为SP没有自增,R0跳到保存R0内容地址TaskIrqContextCPSID i, #0x13禁止中断和切换SVC模式,执行完这条指令后工作模式将切到 SVC模式TaskIrqContext来看,不然100%懵逼.结合看就秒懂,代码都已经注释,不再做解释,注解中提到的 翻看276行 是指源码的第276行,请对照注解源码看理解会更透彻. TaskIrqContext保存完现场后就真正的开始处理中断了. /*BLX 带链接和状态切换的跳转*/
BLX HalIrqHandler /* 调用硬中断处理程序,无参 ,说明HalIrqHandler在svc栈中执行 */
#ifdef LOSCFG_IRQ_USE_STANDALONE_STACK @是否使用了独立的IRQ栈
MOV SP, R4 @恢复现场,sp = R4
POP {R4} @弹出R4
#endif
/* process pending signals */ @处理挂起信号
BL OsTaskProcSignal @跳转至C代码
/* check if needs to schedule */@检查是否需要调度
CMP R0, #0 @是否需要调度,R0为参数保存值
BLNE OsSchedPreempt @不相等,即R0非0,一般是 1
MOV R0,SP @参数
MOV R1,R7 @参数
BL OsSaveSignalContextIrq @跳转至C代码
/* restore fpu regs */
POP_FPU_REGS R0 @恢复fpu寄存器值
ADD SP, SP, #4 @sp = sp + 4 HalIrqHandler OsTaskProcSignal OsSchedPreempt OsSaveSignalContextIrq C语言部分内容很多,将在中断管理篇中说明.TaskIrqContext来看,不然100%懵逼.结合看就秒懂,代码都已经注释,不再做解释,注解中提到的 翻看287行 是指源码的第287行,请对照注解源码看理解会更透彻.如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙:
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。