单片机的性能很大程度上取决于其时钟频率,即每秒执行的指令周期数。制造商通常为单片机指定一个最大时钟频率,以保证稳定性和可靠性。然而,在某些情况下,工程师或爱好者希望通过超频来突破这一限制,以获得更高的性能。 就比如以下这位粉丝:
众所周知,单片机的运行依赖于时钟信号,用于同步CPU和外设的操作。时钟信号通常由以下来源生成:
并非所有单片机都适合超频。超频的可行性取决于芯片的设计、制造工艺和应用场景。
比如,Arduino(ATMega328),官方支持最高20 MHz,但社区实验表明可超频至30 MHz甚至更高。STM32F103,官方最大时钟为72 MHz,但可通过调整PLL超频至128 MHz或更高。
超频需要硬件和软件的支持。硬件上,可能需要更换更高频率的晶振;软件上,需修改时钟配置寄存器并调整外设参数。
对于使用外部晶振的单片机,将晶振更换为更高频率的型号是最直接的方法。例如,将Arduino的16 MHz晶振更换为30 MHz晶振即可提升时钟频率。然而,软件中依赖时钟的模块(如定时器或串口)需要重新配置以适应新频率。
对于支持PLL的单片机(如STM32),通过增加PLL倍频系数可以显著提高系统时钟。例如,STM32F103使用8 MHz HSE,通过将PLL倍频从9调整到16,可将系统时钟从72 MHz提升至128 MHz。
在某些情况下,略微提高供电电压(如从5V到5.5V)可以增强超频时的稳定性,但必须在数据手册规定的范围内操作,以免损坏芯片。
超频虽然能提升性能,但也带来以下风险:
我之前尝试过超频来提升单片机性能,导致Flash存储器需要额外的等待周期以确保正确读取数据,自己给自己制造了一个bug。
此外,超频可能导致制造商保修失效,因此不建议在商业产品中未经充分测试就使用超频。
如果真的想试一试超频技术,必须测试系统的稳定性。以下是一些建议: