日志,由服务器自动创建,并记录运行状态,错误信息,访问数据的文件。同步日志,日志写入函数与工作线程串行执行,由于涉及到I/O操作,当单条日志比较大的时候,同步模式会阻塞整个处理流程,服务器所能处理的并发能力将有所下降,尤其是在峰值的时候,写日志可能成为系统的瓶颈。生产者-消费者模型,并发编程中的经典模型。以多线程为例,为了实现线程间数据同步,生产者线程与消费者线程共享一个缓冲区,其中生产者线程往缓冲区中push消息,消费者线程从缓冲区中pop消息。阻塞队列,将生产者-消费者模型进行封装,使用循环数组实现队列,作为两者共享的缓冲区。异步日志,将所写的日志内容先存入阻塞队列,写线程从阻塞队列中取出内容,写入日志。单例模式,最简单也是被问到最多的设计模式之一,保证一个类只创建一个实例,同时提供全局访问的方法。
本项目中,使用单例模式创建日志系统,对服务器运行状态、错误信息和访问数据进行记录,该系统可以实现按天分类,超行分类功能,可以根据实际情况分别使用同步和异步写入两种方式。
其中异步写入方式,将生产者-消费者模型封装为阻塞队列,创建一个写线程,工作线程将要写的内容push进队列,写线程从队列中取出内容,写入日志文件。
日志系统大致可以分成两部分,其一是单例模式与阻塞队列的定义,其二是日志类的定义与使用。
单例模式作为最常用的设计模式之一,保证一个类仅有一个实例,并提供一个访问它的全局访问点,该实例被所有程序模块共享。
实现思路:私有化它的构造函数,以防止外界创建单例类的对象;使用类的私有静态指针变量指向类的唯一实例,并用一个公有的静态方法获取该实例。
单例模式有两种实现方法,分别是懒汉和饿汉模式。顾名思义,懒汉模式,即非常懒,不用的时候不去初始化,所以在第一次被使用时才进行初始化;饿汉模式,即迫不及待,在程序运行时立即初始化。
单例模式的实现思路如前述所示,其中,经典的线程安全懒汉模式,使用双检测锁模式。
class single{
private:
//私有静态指针变量指向唯一实例
static single *p;
//静态锁,是由于静态函数只能访问静态成员
static pthread_mutex_t lock;
//私有化构造函数
single(){
pthread_mutex_init(&lock, NULL);
}
~single(){}
public:
//公有静态方法获取实例
static single* getinstance();
};
pthread_mutex_t single::lock;
single* single::p = NULL;
single* single::getinstance(){
if (NULL == p){
pthread_mutex_lock(&lock);
if (NULL == p){
p = new single;
}
pthread_mutex_unlock(&lock);
}
return p;
}为什么要用双检测,只检测一次不行吗?
如果只检测一次,在每次调用获取实例的方法时,都需要加锁,这将严重影响程序性能。双层检测可以有效避免这种情况,仅在第一次创建单例的时候加锁,其他时候都不再符合NULL == p的情况,直接返回已创建好的实例。
前面的双检测锁模式,写起来不太优雅,《Effective C++》(Item 04)中的提出另一种更优雅的单例模式实现,使用函数内的局部静态对象,这种方法不用加锁和解锁操作。
class single{
private:
single(){}
~single(){}
public:
static single* getinstance();
};
single* single::getinstance(){
static single obj;
return &obj;
}这时候有人说了,这种方法不加锁会不会造成线程安全问题?
其实,C++0X以后,要求编译器保证内部静态变量的线程安全性,故C++0x之后该实现是线程安全的,C++0x之前仍需加锁,其中C++0x是C++11标准成为正式标准之前的草案临时名字。
所以,如果使用C++11之前的标准,还是需要加锁,这里同样给出加锁的版本。
class single{
private:
static pthread_mutex_t lock;
single(){
pthread_mutex_init(&lock, NULL);
}
~single(){}
public:
static single* getinstance();
};
pthread_mutex_t single::lock;
single* single::getinstance(){
pthread_mutex_lock(&lock);
static single obj;
pthread_mutex_unlock(&lock);
return &obj;
}饿汉模式不需要用锁,就可以实现线程安全。原因在于,在程序运行时就定义了对象,并对其初始化。之后,不管哪个线程调用成员函数getinstance(),都只不过是返回一个对象的指针而已。所以是线程安全的,不需要在获取实例的成员函数中加锁。
class single{
private:
static single* p;
single(){}
~single(){}
public:
static single* getinstance();
};
single* single::p = new single();
single* single::getinstance(){
return p;
}
//测试方法
int main(){
single *p1 = single::getinstance();
single *p2 = single::getinstance();
if (p1 == p2)
cout << "same" << endl;
system("pause");
return 0;
}饿汉模式虽好,但其存在隐藏的问题,在于非静态对象(函数外的static对象)在不同编译单元中的初始化顺序是未定义的。如果在初始化完成之前调用 getInstance() 方法会返回一个未定义的实例。
条件变量提供了一种线程间的通知机制,当某个共享数据达到某个值时,唤醒等待这个共享数据的线程。
使用pthread_cond_wait方式如下:
pthread_mutex_lock(&mutex);
while(线程执行的条件是否成立){
pthread_cond_wait(&cond, &mutex);
}
pthread_mutex_unlock(&mutex);pthread_cond_wait执行后的内部操作分为以下几步:
使用前要加锁,为什么要加锁?
多线程访问,为了避免资源竞争,所以要加锁,使得每个线程互斥的访问公有资源。
pthread_cond_wait内部为什么要解锁?
如果while或者if判断的时候,满足执行条件,线程便会调用pthread_cond_wait阻塞自己,此时它还在持有锁,如果他不解锁,那么其他线程将会无法访问公有资源。
具体到pthread_cond_wait的内部实现,当pthread_cond_wait被调用线程阻塞的时候,pthread_cond_wait会自动释放互斥锁。
为什么要把调用线程放入条件变量的请求队列后再解锁?
线程是并发执行的,如果在把调用线程A放在等待队列之前,就释放了互斥锁,这就意味着其他线程比如线程B可以获得互斥锁去访问公有资源,这时候线程A所等待的条件改变了,但是它没有被放在等待队列上,导致A忽略了等待条件被满足的信号。
倘若在线程A调用pthread_cond_wait开始,到把A放在等待队列的过程中,都持有互斥锁,其他线程无法得到互斥锁,就不能改变公有资源。
为什么最后还要加锁?
将线程放在条件变量的请求队列后,将其解锁,此时等待被唤醒,若成功竞争到互斥锁,再次加锁。
为什么判断线程执行的条件用while而不是if?
一般来说,在多线程资源竞争的时候,在一个使用资源的线程里面(消费者)判断资源是否可用,不可用,便调用pthread_cond_wait,在另一个线程里面(生产者)如果判断资源可用的话,则调用pthread_cond_signal发送一个资源可用信号。
在wait成功之后,资源就一定可以被使用么?答案是否定的,如果同时有两个或者两个以上的线程正在等待此资源,wait返回后,资源可能已经被使用了。
再具体点,有可能多个线程都在等待这个资源可用的信号,信号发出后只有一个资源可用,但是有A,B两个线程都在等待,B比较速度快,获得互斥锁,然后加锁,消耗资源,然后解锁,之后A获得互斥锁,但A回去发现资源已经被使用了,它便有两个选择,一个是去访问不存在的资源,另一个就是继续等待,那么继续等待下去的条件就是使用while,要不然使用if的话pthread_cond_wait返回后,就会顺序执行下去。
所以,在这种情况下,应该使用while而不是if:
while(resource == FALSE)
pthread_cond_wait(&cond, &mutex);如果只有一个消费者,那么使用if是可以的。
这里摘抄《Unix 环境高级编程》中第11章线程关于pthread_cond_wait的介绍中有一个生产者-消费者的例子P311,其中,process_msg相当于消费者,enqueue_msg相当于生产者,struct msg* workq作为缓冲队列。
生产者和消费者是互斥关系,两者对缓冲区访问互斥,同时生产者和消费者又是一个相互协作与同步的关系,只有生产者生产之后,消费者才能消费。
#include <pthread.h>
struct msg {
struct msg *m_next;
/* value...*/
};
struct msg* workq;
pthread_cond_t qready = PTHREAD_COND_INITIALIZER;
pthread_mutex_t qlock = PTHREAD_MUTEX_INITIALIZER;
void
process_msg() {
struct msg* mp;
for (;;) {
pthread_mutex_lock(&qlock);
//这里需要用while,而不是if
while (workq == NULL) {
pthread_cond_wait(&qready, &qlock);
}
mp = workq;
workq = mp->m_next;
pthread_mutex_unlock(&qlock);
/* now process the message mp */
}
}
void
enqueue_msg(struct msg* mp) {
pthread_mutex_lock(&qlock);
mp->m_next = workq;
workq = mp;
pthread_mutex_unlock(&qlock);
/** 此时另外一个线程在signal之前,执行了process_msg,刚好把mp元素拿走*/
pthread_cond_signal(&qready);
/** 此时执行signal, 在pthread_cond_wait等待的线程被唤醒,
但是mp元素已经被另外一个线程拿走,所以,workq还是NULL ,因此需要继续等待*/
}阻塞队列类中封装了生产者-消费者模型,其中push成员是生产者,pop成员是消费者。
阻塞队列中,使用了循环数组实现了队列,作为两者共享缓冲区,当然了,队列也可以使用STL中的queue。
当队列为空时,从队列中获取元素的线程将会被挂起;当队列是满时,往队列里添加元素的线程将会挂起。
阻塞队列类中,有些代码比较简单,这里仅对push和pop成员进行详解。
```cpp
class block_queue
{
public:
//初始化私有成员
block_queue(int max_size = 1000)
{
if (max_size <= 0)
{
exit(-1);
}
//构造函数创建循环数组
m_max_size = max_size;
m_array = new T[max_size];
m_size = 0;
m_front = -1;
m_back = -1;
//创建互斥锁和条件变量
m_mutex = new pthread_mutex_t;
m_cond = new pthread_cond_t;
pthread_mutex_init(m_mutex, NULL);
pthread_cond_init(m_cond, NULL);
}
//往队列添加元素,需要将所有使用队列的线程先唤醒
//当有元素push进队列,相当于生产者生产了一个元素
//若当前没有线程等待条件变量,则唤醒无意义
bool push(const T &item)
{
pthread_mutex_lock(m_mutex);
if (m_size >= m_max_size)
{
pthread_cond_broadcast(m_cond);
pthread_mutex_unlock(m_mutex);
return false;
}
//将新增数据放在循环数组的对应位置
m_back = (m_back + 1) % m_max_size;
m_array[m_back] = item;
m_size++;
pthread_cond_broadcast(m_cond);
pthread_mutex_unlock(m_mutex);
return true;
}
//pop时,如果当前队列没有元素,将会等待条件变量
bool pop(T &item)
{
pthread_mutex_lock(m_mutex);
//多个消费者的时候,这里要是用while而不是if
while (m_size <= 0)
{
//当重新抢到互斥锁,pthread_cond_wait返回为0
if (0 != pthread_cond_wait(m_cond, m_mutex))
{
pthread_mutex_unlock(m_mutex);
return false;
}
}
//取出队列首的元素,这里需要理解一下,使用循环数组模拟的队列
m_front = (m_front + 1) % m_max_size;
item = m_array[m_front];
m_size--;
pthread_mutex_unlock(m_mutex);
return true;
}
//增加了超时处理,在项目中没有使用到
//在pthread_cond_wait基础上增加了等待的时间,只指定时间内能抢到互斥锁即可
//其他逻辑不变
bool pop(T &item, int ms_timeout)
{
struct timespec t = {0, 0};
struct timeval now = {0, 0};
gettimeofday(&now, NULL);
pthread_mutex_lock(m_mutex);
if (m_size <= 0)
{
t.tv_sec = now.tv_sec + ms_timeout / 1000;
t.tv_nsec = (ms_timeout % 1000) * 1000;
if (0 != pthread_cond_timedwait(m_cond, m_mutex, &t))
{
pthread_mutex_unlock(m_mutex);
return false;
}
}
if (m_size <= 0)
{
pthread_mutex_unlock(m_mutex);
return false;
}
m_front = (m_front + 1) % m_max_size;
item = m_array[m_front];
m_size--;
pthread_mutex_unlock(m_mutex);
return true;
}
};
```通过局部变量的懒汉单例模式创建日志实例,对其进行初始化生成日志文件后,格式化输出内容,并根据不同的写入方式,完成对应逻辑,写入日志文件。
日志类包括但不限于如下方法,
```cpp
class Log
{
public:
//C++11以后,使用局部变量懒汉不用加锁
static Log *get_instance()
{
static Log instance;
return &instance;
}
//可选择的参数有日志文件、日志缓冲区大小、最大行数以及最长日志条队列
bool init(const char *file_name, int log_buf_size = 8192, int split_lines = 5000000, int max_queue_size = 0);
//异步写日志公有方法,调用私有方法async_write_log
static void *flush_log_thread(void *args)
{
Log::get_instance()->async_write_log();
}
//将输出内容按照标准格式整理
void write_log(int level, const char *format, ...);
//强制刷新缓冲区
void flush(void);
private:
Log();
virtual ~Log();
//异步写日志方法
void *async_write_log()
{
string single_log;
//从阻塞队列中取出一条日志内容,写入文件
while (m_log_queue->pop(single_log))
{
m_mutex.lock();
fputs(single_log.c_str(), m_fp);
m_mutex.unlock();
}
}
private:
char dir_name[128]; //路径名
char log_name[128]; //log文件名
int m_split_lines; //日志最大行数
int m_log_buf_size; //日志缓冲区大小
long long m_count; //日志行数记录
int m_today; //按天分文件,记录当前时间是那一天
FILE *m_fp; //打开log的文件指针
char *m_buf; //要输出的内容
block_queue<string> *m_log_queue; //阻塞队列
bool m_is_async; //是否同步标志位
locker m_mutex; //同步类
};
//这四个宏定义在其他文件中使用,主要用于不同类型的日志输出
#define LOG_DEBUG(format, ...) Log::get_instance()->write_log(0, format, __VA_ARGS__)
#define LOG_INFO(format, ...) Log::get_instance()->write_log(1, format, __VA_ARGS__)
#define LOG_WARN(format, ...) Log::get_instance()->write_log(2, format, __VA_ARGS__)
#define LOG_ERROR(format, ...) Log::get_instance()->write_log(3, format, __VA_ARGS__)
```日志类中的方法都不会被其他程序直接调用,末尾的四个可变参数宏提供了其他程序的调用方法。
前述方法对日志等级进行分类,包括DEBUG,INFO,WARN和ERROR四种级别的日志。
init函数实现日志创建、写入方式的判断。
write_log函数完成写入日志文件中的具体内容,主要实现日志分级、分文件、格式化输出内容。
通过单例模式获取唯一的日志类,调用init方法,初始化生成日志文件,服务器启动按当前时刻创建日志,前缀为时间,后缀为自定义log文件名,并记录创建日志的时间day和行数count。
写入方式通过初始化时是否设置队列大小(表示在队列中可以放几条数据)来判断,若队列大小为0,则为同步,否则为异步。
//异步需要设置阻塞队列的长度,同步不需要设置
bool Log::init(const char *file_name, int log_buf_size, int split_lines, int max_queue_size)
{
//如果设置了max_queue_size,则设置为异步
if (max_queue_size >= 1)
{
//设置写入方式flag
m_is_async = true;
//创建并设置阻塞队列长度
m_log_queue = new block_queue<string>(max_queue_size);
pthread_t tid;
//flush_log_thread为回调函数,这里表示创建线程异步写日志
pthread_create(&tid, NULL, flush_log_thread, NULL);
}
//输出内容的长度
m_log_buf_size = log_buf_size;
m_buf = new char[m_log_buf_size];
memset(m_buf, '\0', m_log_buf_size);
//日志的最大行数
m_split_lines = split_lines;
time_t t = time(NULL);
struct tm *sys_tm = localtime(&t);
struct tm my_tm = *sys_tm;
//从后往前找到第一个/的位置
const char *p = strrchr(file_name, '/');
char log_full_name[256] = {0};
//相当于自定义日志名
//若输入的文件名没有/,则直接将时间+文件名作为日志名
if (p == NULL)
{
snprintf(log_full_name, 255, "%d_%02d_%02d_%s", my_tm.tm_year + 1900, my_tm.tm_mon + 1, my_tm.tm_mday, file_name);
}
else
{
//将/的位置向后移动一个位置,然后复制到logname中
//p - file_name + 1是文件所在路径文件夹的长度
//dirname相当于./
strcpy(log_name, p + 1);
strncpy(dir_name, file_name, p - file_name + 1);
//后面的参数跟format有关
snprintf(log_full_name, 255, "%s%d_%02d_%02d_%s", dir_name, my_tm.tm_year + 1900, my_tm.tm_mon + 1, my_tm.tm_mday, log_name);
}
m_today = my_tm.tm_mday;
m_fp = fopen(log_full_name, "a");
if (m_fp == NULL)
{
return false;
}
return true;
}日志分级的实现大同小异,一般的会提供五种级别,具体的,
上述的使用方法仅仅是个人理解,在开发中具体如何选择等级因人而异。项目中给出了除Fatal外的四种分级,实际使用了Debug,Info和Error三种。
超行、按天分文件逻辑,具体的,
将系统信息格式化后输出,具体为:格式化时间 + 格式化内容
void Log::write_log(int level, const char *format, ...)
{
struct timeval now = {0, 0};
gettimeofday(&now, NULL);
time_t t = now.tv_sec;
struct tm *sys_tm = localtime(&t);
struct tm my_tm = *sys_tm;
char s[16] = {0};
//日志分级
switch (level)
{
case 0:
strcpy(s, "[debug]:");
break;
case 1:
strcpy(s, "[info]:");
break;
case 2:
strcpy(s, "[warn]:");
break;
case 3:
strcpy(s, "[erro]:");
break;
default:
strcpy(s, "[info]:");
break;
}
m_mutex.lock();
//更新现有行数
m_count++;
//日志不是今天或写入的日志行数是最大行的倍数
//m_split_lines为最大行数
if (m_today != my_tm.tm_mday || m_count % m_split_lines == 0)
{
char new_log[256] = {0};
fflush(m_fp);
fclose(m_fp);
char tail[16] = {0};
//格式化日志名中的时间部分
snprintf(tail, 16, "%d_%02d_%02d_", my_tm.tm_year + 1900, my_tm.tm_mon + 1, my_tm.tm_mday);
//如果是时间不是今天,则创建今天的日志,更新m_today和m_count
if (m_today != my_tm.tm_mday)
{
snprintf(new_log, 255, "%s%s%s", dir_name, tail, log_name);
m_today = my_tm.tm_mday;
m_count = 0;
}
else
{
//超过了最大行,在之前的日志名基础上加后缀, m_count/m_split_lines
snprintf(new_log, 255, "%s%s%s.%lld", dir_name, tail, log_name, m_count / m_split_lines);
}
m_fp = fopen(new_log, "a");
}
m_mutex.unlock();
va_list valst;
//将传入的format参数赋值给valst,便于格式化输出
va_start(valst, format);
string log_str;
m_mutex.lock();
//写入内容格式:时间 + 内容
//时间格式化,snprintf成功返回写字符的总数,其中不包括结尾的null字符
int n = snprintf(m_buf, 48, "%d-%02d-%02d %02d:%02d:%02d.%06ld %s ",
my_tm.tm_year + 1900, my_tm.tm_mon + 1, my_tm.tm_mday,
my_tm.tm_hour, my_tm.tm_min, my_tm.tm_sec, now.tv_usec, s);
//内容格式化,用于向字符串中打印数据、数据格式用户自定义,返回写入到字符数组str中的字符个数(不包含终止符)
int m = vsnprintf(m_buf + n, m_log_buf_size - 1, format, valst);
m_buf[n + m] = '\n';
m_buf[n + m + 1] = '\0';
log_str = m_buf;
m_mutex.unlock();
//若m_is_async为true表示异步,默认为同步
//若异步,则将日志信息加入阻塞队列,同步则加锁向文件中写
if (m_is_async && !m_log_queue->full())
{
m_log_queue->push(log_str);
}
else
{
m_mutex.lock();
fputs(log_str.c_str(), m_fp);
m_mutex.unlock();
}
va_end(valst);
}