
【安装模板】
cuda环境变量的添加:
vi ~/.bashrc
9.0版本
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-9.0/lib64 export PATH=$PATH:/usr/local/cuda-9.0/bin export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-9.0
9.2版本
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-9.2/lib64 export PATH=$PATH:/usr/local/cuda-9.2/bin export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-9.2
10.0版本
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.0/lib64 export PATH=$PATH:/usr/local/cuda-10.0/bin export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-10.0
10.1版本
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.1/lib64 export PATH=$PATH:/usr/local/cuda-10.1/bin export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-10.1
10.2版本
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.2/lib64 export PATH=$PATH:/usr/local/cuda-10.2/bin export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-10.2
11.0版本
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.0/lib64 export PATH=$PATH:/usr/local/cuda-11.0/bin export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-11.0
11.1版本
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.1/lib64 export PATH=$PATH:/usr/local/cuda-11.1/bin export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-11.1
11.2版本
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.2/lib64 export PATH=$PATH:/usr/local/cuda-11.2/bin export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-11.2
11.3版本
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.3/lib64 export PATH=$PATH:/usr/local/cuda-11.3/bin export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-11.3
11.6版本
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.6/lib64 export PATH=$PATH:/usr/local/cuda-11.6/bin export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-11.6
11.7版本
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.7/lib64 export PATH=$PATH:/usr/local/cuda-11.7/bin export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-11.7
11.8版本
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.8/lib64 export PATH=$PATH:/usr/local/cuda-11.8/bin export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-11.8
12.1版本
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-12.1/lib64 export PATH=$PATH:/usr/local/cuda-12.1/bin export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-12.1
12.4版本
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-12.4/lib64 export PATH=$PATH:/usr/local/cuda-12.4/bin export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-12.4
12.5版本
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-12.5/lib64 export PATH=$PATH:/usr/local/cuda-12.5/bin export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-12.5
12.6版本
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-12.6/lib64 export PATH=$PATH:/usr/local/cuda-12.6/bin export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-12.6
source ~/.bashrc
cudnn安装:
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn.h sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
或者
sudo cp -r cuda/include/* /usr/local/cuda/include/ sudo cp -r cuda/lib64/* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn.h sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
cudnn适配cuda12.2安装:
sudo cp -r ./include/* /usr/local/cuda/include/ sudo cp -r ./lib/* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn.h sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
【安装步骤】
CUDA和cuDNN是由NVIDIA提供的两个关键软件库,CUDA用于利用NVIDIA GPU进行高性能计算,而cuDNN则是专门用于深度学习的GPU加速库。以下是CUDA环境变量的添加和cuDNN安装的具体步骤:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vXX.0\bin)。C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vXX.0\include),供编译器能找到库。如果安装过程中未自动添加环境变量,可以手动添加。
source ~/.bashrc或source ~/.bash_profile使更改生效。
cudnn.h头文件复制到CUDA的include目录中(如C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vXX.0\include)。libcudnn*动态链接库文件复制到CUDA的lib64目录中(如C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vXX.0\lib64)。bash复制代码
sudo cp -r cuda/include/* /usr/local/cuda/include/sudo cp -r cuda/lib64/* /usr/local/cuda/lib64/sudo chmod a+r /usr/local/cuda/include/cudnn.hsudo chmod a+r /usr/local/cuda/lib64/libcudnn* 这里的cuda/是解压后的cuDNN目录,根据实际情况进行调整。
nvcc -V命令,输出版本号代表CUDA安装成功。C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vXX.0\extras\demo_suite),然后执行deviceQuery.exe程序。如果结果为PASS,则证明cuDNN安装成功。对于Linux系统,可以使用类似的方法或参考NVIDIA官方文档进行验证。请注意,在安装过程中务必确保CUDA和cuDNN的版本兼容性,以及系统环境的正确性。如果遇到任何问题,可以参考NVIDIA官方文档或寻求社区帮助。