
测试环境:
ubuntu20.04
onnxruntime_gpu=1.28.0
cuda12.0+cudnn8.9.2
测试代码:
CMakeLists.txt
cmake_minimum_required(VERSION 3.10)
project(onnxruntime_gpu_test)
set(CMAKE_CXX_STANDARD 17)
option(USE_CUDA "Enable CUDA support" ON)
if (NOT APPLE AND USE_CUDA)
find_package(CUDA REQUIRED)
include_directories(${CUDA_INCLUDE_DIRS})
add_definitions(-DUSE_CUDA)
else ()
set(USE_CUDA OFF)
endif ()
set(ONNXRUNTIME_DIR /home/drose/onnxruntime-linux-x64-gpu-1.18.0)
# 查找ONNX Runtime包
include_directories(${ONNXRUNTIME_DIR}/include)
# 添加可执行文件
add_executable(${PROJECT_NAME} main.cpp)
target_link_libraries(${PROJECT_NAME} ${ONNXRUNTIME_DIR}/lib/libonnxruntime.so
)
if (USE_CUDA)
target_link_libraries(${PROJECT_NAME} ${CUDA_LIBRARIES})
endif ()main.cpp
#include <iostream>
#include <vector>
#include <onnxruntime_cxx_api.h>
int main() {
// 初始化ONNX Runtime环境
Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "ONNXRuntimeGpuTest");
Ort::SessionOptions session_options;
// 配置GPU选项
OrtCUDAProviderOptions cuda_options;
session_options.AppendExecutionProvider_CUDA(cuda_options);
// 设置线程数(可选)
session_options.SetIntraOpNumThreads(1);
// 加载模型
const char* model_path = "model.onnx"; // 替换为你的模型路径
Ort::Session session(env, model_path, session_options);
size_t inputNodeCount= session.GetInputCount();
std::cout << "输入节点数量:" << inputNodeCount << "\n";
Ort::AllocatorWithDefaultOptions allocator;
std::shared_ptr<char> inputName = std::move(session.GetInputNameAllocated(0, allocator));
std::vector<char*> inputNodeNames;
inputNodeNames.push_back(inputName.get());
std::cout << "输入节点名称:" << inputName << "\n";
Ort::TypeInfo inputTypeInfo = session.GetInputTypeInfo(0);
auto input_tensor_info = inputTypeInfo.GetTensorTypeAndShapeInfo();
ONNXTensorElementDataType inputNodeDataType = input_tensor_info.GetElementType();
std::vector<int64_t> inputTensorShape = input_tensor_info.GetShape();
std::cout << "输入节点shape:";
for (int i = 0; i<inputTensorShape.size(); i++)
{
std::cout << inputTensorShape[i]<<" ";
}
std::cout << "\n";
//获取输出节点数量、名称和shape
size_t outputNodeCount = session.GetOutputCount();
std::cout << "输出节点数量:" << outputNodeCount << "\n";
std::shared_ptr<char> outputName = std::move(session.GetOutputNameAllocated(0, allocator));
std::vector<char*> outputNodeNames;
outputNodeNames.push_back(outputName.get());
std::cout << "输出节点名称:" << outputName << "\n";
Ort::TypeInfo type_info_output0(nullptr);
type_info_output0 = session.GetOutputTypeInfo(0); //output0
auto tensor_info_output0 = type_info_output0.GetTensorTypeAndShapeInfo();
ONNXTensorElementDataType outputNodeDataType = tensor_info_output0.GetElementType();
std::vector<int64_t> outputTensorShape = tensor_info_output0.GetShape();
std::cout << "输出节点shape:";
for (int i = 0; i<outputTensorShape.size(); i++)
{
std::cout << outputTensorShape[i]<<" ";
}
std::cout << "\n";
return 0;
}文件结构:

model.onnx用的是yolov8官方pt模型转成onnx,您也可以使用其他onnx模型均可
最后输出结果:
