作者:HOS(安全风信子) 日期:2026-01-01 来源平台:GitHub 摘要: 本文深入探讨了 MCP v2.0 框架下的攻防模拟应用,构建了完整的 MCP 攻防模拟体系。通过真实代码示例和 Mermaid 图表,详细分析了 MCP 攻防模拟框架、动态威胁场景生成、MCP 漏洞利用链分析的实现原理和最佳实践。本文引入了 MCP 攻防模拟框架、动态威胁场景生成、MCP 漏洞利用链分析三个全新要素,旨在帮助开发者构建更加安全、可靠的 MCP 系统,通过攻防模拟发现和修复安全漏洞,提高 MCP 系统的整体安全性。
随着 MCP v2.0 作为连接 LLM 与外部工具的标准化协议的广泛应用,MCP 系统面临的安全挑战日益复杂。攻防模拟作为一种主动安全测试方法,能够帮助开发者在真实攻击发生之前发现和修复安全漏洞,提高系统的整体安全性。2025 年以来,全球范围内发生了多起与 AI 工具调用相关的安全事件:
这些事件凸显了 MCP 系统进行攻防模拟的重要性。合理的攻防模拟能够:
MCP v2.0 框架下的攻防模拟具有以下特殊性:
本文将深入探讨 MCP v2.0 框架下的攻防模拟应用,构建完整的 MCP 攻防模拟体系。通过真实代码示例和 Mermaid 图表,详细讲解如何设计和实现 MCP 攻防模拟系统,包括攻防模拟框架、动态威胁场景生成、漏洞利用链分析等。本文旨在帮助开发者:
攻防模拟方案 | 优势 | 劣势 | 适用场景 |
|---|---|---|---|
传统渗透测试 | 深入全面,能够发现复杂漏洞 | 耗时耗力,成本高 | 关键系统,定期测试 |
自动化漏洞扫描 | 快速高效,成本低 | 只能发现已知漏洞,误报率高 | 大规模系统,定期扫描 |
红队评估 | 模拟真实攻击,能够发现深层问题 | 成本高,周期长 | 高端客户,重要项目 |
MCP 攻防模拟 | 专门针对 MCP 设计,支持动态场景,自动化执行 | 实现复杂,需要专业团队 | MCP v2.0 框架 |
MCP 攻防模拟框架设计基于以下核心原则:
MCP 攻防模拟框架包括以下核心组件:


MCP 攻防模拟流程如下:

# mcp_attack_manager.py
from typing import Dict, List, Optional
import logging
from datetime import datetime
class AttackScenario:
def __init__(self, scenario_id: str, name: str, description: str,
attack_type: str, target: str, payload: Dict,
expected_result: str, severity: str):
self.scenario_id = scenario_id
self.name = name
self.description = description
self.attack_type = attack_type
self.target = target
self.payload = payload
self.expected_result = expected_result
self.severity = severity
self.created_at = datetime.now()
self.updated_at = datetime.now()
def to_dict(self) -> Dict:
"""转换为字典"""
return {
"scenario_id": self.scenario_id,
"name": self.name,
"description": self.description,
"attack_type": self.attack_type,
"target": self.target,
"payload": self.payload,
"expected_result": self.expected_result,
"severity": self.severity,
"created_at": self.created_at.isoformat(),
"updated_at": self.updated_at.isoformat()
}
class AttackResult:
def __init__(self, result_id: str, scenario_id: str,
start_time: datetime, end_time: datetime,
status: str, actual_result: str,
is_success: bool, details: Dict):
self.result_id = result_id
self.scenario_id = scenario_id
self.start_time = start_time
self.end_time = end_time
self.status = status
self.actual_result = actual_result
self.is_success = is_success
self.details = details
self.duration = (end_time - start_time).total_seconds()
def to_dict(self) -> Dict:
"""转换为字典"""
return {
"result_id": self.result_id,
"scenario_id": self.scenario_id,
"start_time": self.start_time.isoformat(),
"end_time": self.end_time.isoformat(),
"status": self.status,
"actual_result": self.actual_result,
"is_success": self.is_success,
"details": self.details,
"duration": self.duration
}
class MCPAttackManager:
def __init__(self):
self.scenarios = {}
self.results = {}
self.logger = logging.getLogger("mcp_attack_manager")
def add_scenario(self, scenario: AttackScenario):
"""添加攻击场景"""
self.scenarios[scenario.scenario_id] = scenario
self.logger.info(f"Added attack scenario: {scenario.scenario_id}")
def remove_scenario(self, scenario_id: str):
"""移除攻击场景"""
if scenario_id in self.scenarios:
del self.scenarios[scenario_id]
self.logger.info(f"Removed attack scenario: {scenario_id}")
def update_scenario(self, scenario: AttackScenario):
"""更新攻击场景"""
scenario.updated_at = datetime.now()
self.scenarios[scenario.scenario_id] = scenario
self.logger.info(f"Updated attack scenario: {scenario.scenario_id}")
def get_scenario(self, scenario_id: str) -> Optional[AttackScenario]:
"""获取攻击场景"""
return self.scenarios.get(scenario_id)
def get_all_scenarios(self) -> List[Dict]:
"""获取所有攻击场景"""
return [scenario.to_dict() for scenario in self.scenarios.values()]
def add_result(self, result: AttackResult):
"""添加攻击结果"""
self.results[result.result_id] = result
self.logger.info(f"Added attack result: {result.result_id}")
def get_result(self, result_id: str) -> Optional[AttackResult]:
"""获取攻击结果"""
return self.results.get(result_id)
def get_scenario_results(self, scenario_id: str) -> List[Dict]:
"""获取特定场景的攻击结果"""
return [result.to_dict() for result in self.results.values()
if result.scenario_id == scenario_id]
def get_all_results(self) -> List[Dict]:
"""获取所有攻击结果"""
return [result.to_dict() for result in self.results.values()]
def run_scenario(self, scenario_id: str) -> str:
"""运行攻击场景"""
self.logger.info(f"Running attack scenario: {scenario_id}")
# 这里简化处理,实际应调用攻击执行模块
# 生成结果 ID
result_id = f"result_{scenario_id}_{datetime.now().timestamp()}"
# 创建攻击结果
result = AttackResult(
result_id=result_id,
scenario_id=scenario_id,
start_time=datetime.now(),
end_time=datetime.now(),
status="completed",
actual_result="攻击执行成功",
is_success=True,
details={"message": "攻击执行完成"}
)
# 添加攻击结果
self.add_result(result)
self.logger.info(f"Attack scenario {scenario_id} completed, result_id: {result_id}")
return result_id动态威胁场景生成基于 AI 技术,能够自动生成多样化的攻击场景。其核心原理包括:
# mcp_scenario_generator.py
from typing import Dict, List, Optional
import logging
from datetime import datetime
import random
import json
class ThreatIntelligence:
def __init__(self, threat_id: str, threat_type: str,
description: str, severity: str,
attack_vector: str, mitigation: str):
self.threat_id = threat_id
self.threat_type = threat_type
self.description = description
self.severity = severity
self.attack_vector = attack_vector
self.mitigation = mitigation
self.created_at = datetime.now()
def to_dict(self) -> Dict:
"""转换为字典"""
return {
"threat_id": self.threat_id,
"threat_type": self.threat_type,
"description": self.description,
"severity": self.severity,
"attack_vector": self.attack_vector,
"mitigation": self.mitigation,
"created_at": self.created_at.isoformat()
}
class AIScenarioGenerator:
def __init__(self):
self.threat_intelligence = []
self.logger = logging.getLogger("mcp_ai_scenario_generator")
def add_threat_intelligence(self, ti: ThreatIntelligence):
"""添加威胁情报"""
self.threat_intelligence.append(ti)
self.logger.info(f"Added threat intelligence: {ti.threat_id}")
def generate_scenario(self, mcp_system_info: Dict) -> Dict:
"""生成攻击场景"""
self.logger.info("Generating attack scenario")
# 从威胁情报中随机选择一个威胁
if not self.threat_intelligence:
self.logger.error("No threat intelligence available")
return None
selected_ti = random.choice(self.threat_intelligence)
# 基于威胁情报生成攻击场景
scenario = {
"scenario_id": f"scenario_{datetime.now().timestamp()}",
"name": f"{selected_ti.threat_type} 攻击场景",
"description": f"基于威胁情报 {selected_ti.threat_id} 生成的 {selected_ti.threat_type} 攻击场景",
"attack_type": selected_ti.threat_type,
"target": self._select_target(mcp_system_info),
"payload": self._generate_payload(selected_ti, mcp_system_info),
"expected_result": f"成功执行 {selected_ti.threat_type} 攻击",
"severity": selected_ti.severity
}
self.logger.info(f"Generated attack scenario: {scenario['scenario_id']}, type: {scenario['attack_type']}")
return scenario
def _select_target(self, mcp_system_info: Dict) -> str:
"""选择攻击目标"""
# 基于 MCP 系统信息选择攻击目标
components = mcp_system_info.get("components", ["client", "server", "host"])
return random.choice(components)
def _generate_payload(self, ti: ThreatIntelligence, mcp_system_info: Dict) -> Dict:
"""生成攻击 payload"""
# 基于威胁情报和 MCP 系统信息生成攻击 payload
payload = {
"attack_vector": ti.attack_vector,
"target_component": self._select_target(mcp_system_info),
"parameters": self._generate_parameters(ti.threat_type)
}
return payload
def _generate_parameters(self, attack_type: str) -> Dict:
"""生成攻击参数"""
# 根据攻击类型生成不同的攻击参数
parameters = {}
if attack_type == "身份伪造":
parameters = {
"client_id": f"fake_client_{random.randint(1000, 9999)}",
"user_id": f"fake_user_{random.randint(1000, 9999)}",
"token": "fake_token_1234567890"
}
elif attack_type == "工具越权":
parameters = {
"tool_id": "restricted_tool",
"parameters": {"file_path": "/etc/passwd"}
}
elif attack_type == "沙箱逃逸":
parameters = {
"tool_id": "sandboxed_tool",
"parameters": {"command": "bash -c 'echo hello > /host/tmp/escape.txt'"}
}
elif attack_type == "拒绝服务":
parameters = {
"tool_id": "resource_intensive_tool",
"parameters": {"iterations": 1000000}
}
else:
# 默认参数
parameters = {
"tool_id": "test_tool",
"parameters": {"param1": "value1", "param2": "value2"}
}
return parameters
def generate_batch_scenarios(self, mcp_system_info: Dict, count: int = 5) -> List[Dict]:
"""批量生成攻击场景"""
self.logger.info(f"Generating {count} attack scenarios")
scenarios = []
for i in range(count):
scenario = self.generate_scenario(mcp_system_info)
if scenario:
scenarios.append(scenario)
self.logger.info(f"Generated {len(scenarios)} attack scenarios")
return scenarios
# 示例使用
if __name__ == "__main__":
# 配置日志
logging.basicConfig(level=logging.INFO)
# 创建 AI 场景生成器
generator = AIScenarioGenerator()
# 添加威胁情报
ti1 = ThreatIntelligence(
threat_id="ti_001",
threat_type="身份伪造",
description="攻击者伪造合法用户身份,获取未授权访问权限",
severity="high",
attack_vector="API 调用",
mitigation="加强身份验证,使用 MFA,定期轮换凭证"
)
generator.add_threat_intelligence(ti1)
ti2 = ThreatIntelligence(
threat_id="ti_002",
threat_type="工具越权",
description="攻击者利用工具漏洞,执行超出权限范围的操作",
severity="critical",
attack_vector="工具调用",
mitigation="实施最小权限原则,加强工具权限管理"
)
generator.add_threat_intelligence(ti2)
ti3 = ThreatIntelligence(
threat_id="ti_003",
threat_type="沙箱逃逸",
description="攻击者从沙箱环境中逃逸,执行恶意代码",
severity="critical",
attack_vector="沙箱环境",
mitigation="加强沙箱隔离,定期更新沙箱环境"
)
generator.add_threat_intelligence(ti3)
# MCP 系统信息
mcp_system_info = {
"components": ["client", "server", "host"],
"tools": ["file_reader", "command_executor", "network_scanner"],
"version": "v2.0"
}
# 生成攻击场景
scenario = generator.generate_scenario(mcp_system_info)
print(f"Generated scenario: {json.dumps(scenario, indent=2, ensure_ascii=False)}")
# 批量生成攻击场景
scenarios = generator.generate_batch_scenarios(mcp_system_info, count=3)
print(f"\nGenerated {len(scenarios)} scenarios:")
for s in scenarios:
print(f"- {s['name']} (ID: {s['scenario_id']})")MCP 漏洞利用链分析是指识别和分析 MCP 系统中的漏洞利用链,了解攻击者如何利用多个漏洞组合进行攻击。其核心原理包括:
# mcp_exploit_chain_analyzer.py
from typing import Dict, List, Optional
import logging
from datetime import datetime
class Vulnerability:
def __init__(self, vuln_id: str, name: str, description: str,
severity: str, component: str, cvss_score: float,
attack_vector: str):
self.vuln_id = vuln_id
self.name = name
self.description = description
self.severity = severity
self.component = component
self.cvss_score = cvss_score
self.attack_vector = attack_vector
self.related_vulns = []
def add_related_vuln(self, vuln_id: str):
"""添加相关漏洞"""
if vuln_id not in self.related_vulns:
self.related_vulns.append(vuln_id)
def to_dict(self) -> Dict:
"""转换为字典"""
return {
"vuln_id": self.vuln_id,
"name": self.name,
"description": self.description,
"severity": self.severity,
"component": self.component,
"cvss_score": self.cvss_score,
"attack_vector": self.attack_vector,
"related_vulns": self.related_vulns
}
class ExploitChain:
def __init__(self, chain_id: str, vulns: List[Vulnerability],
attack_path: List[str], total_risk: float):
self.chain_id = chain_id
self.vulns = vulns
self.attack_path = attack_path
self.total_risk = total_risk
self.created_at = datetime.now()
def to_dict(self) -> Dict:
"""转换为字典"""
return {
"chain_id": self.chain_id,
"vulns": [vuln.to_dict() for vuln in self.vulns],
"attack_path": self.attack_path,
"total_risk": self.total_risk,
"created_at": self.created_at.isoformat()
}
class MCPExploitChainAnalyzer:
def __init__(self):
self.vulnerabilities = {}
self.exploit_chains = []
self.logger = logging.getLogger("mcp_exploit_chain_analyzer")
def add_vulnerability(self, vuln: Vulnerability):
"""添加漏洞"""
self.vulnerabilities[vuln.vuln_id] = vuln
self.logger.info(f"Added vulnerability: {vuln.vuln_id}, component: {vuln.component}")
def analyze_exploit_chains(self) -> List[ExploitChain]:
"""分析漏洞利用链"""
self.logger.info("Starting exploit chain analysis")
# 构建漏洞关联图
vuln_graph = self._build_vuln_graph()
# 寻找所有可能的漏洞利用链
chains = self._find_all_chains(vuln_graph)
# 评估每个漏洞利用链的风险
exploit_chains = []
for i, chain in enumerate(chains):
# 获取链中的漏洞
chain_vulns = [self.vulnerabilities[vuln_id] for vuln_id in chain if vuln_id in self.vulnerabilities]
if not chain_vulns:
continue
# 计算总风险
total_risk = sum(vuln.cvss_score for vuln in chain_vulns)
# 创建漏洞利用链
exploit_chain = ExploitChain(
chain_id=f"chain_{datetime.now().timestamp()}_{i}",
vulns=chain_vulns,
attack_path=chain,
total_risk=total_risk
)
exploit_chains.append(exploit_chain)
self.exploit_chains.append(exploit_chain)
# 按风险排序
exploit_chains.sort(key=lambda x: x.total_risk, reverse=True)
self.logger.info(f"Found {len(exploit_chains)} exploit chains")
return exploit_chains
def _build_vuln_graph(self) -> Dict[str, List[str]]:
"""构建漏洞关联图"""
graph = {}
for vuln_id, vuln in self.vulnerabilities.items():
graph[vuln_id] = vuln.related_vulns
return graph
def _find_all_chains(self, graph: Dict[str, List[str]], max_length: int = 5) -> List[List[str]]:
"""寻找所有可能的漏洞利用链"""
chains = []
# 深度优先搜索寻找所有可能的链
def dfs(node, path, visited):
if len(path) > max_length:
return
if path not in chains:
chains.append(path.copy())
visited.add(node)
for neighbor in graph.get(node, []):
if neighbor not in visited:
path.append(neighbor)
dfs(neighbor, path, visited.copy())
path.pop()
# 从每个漏洞开始搜索
for node in graph.keys():
dfs(node, [node], set())
# 过滤掉长度为 1 的链(单个漏洞)
chains = [chain for chain in chains if len(chain) > 1]
return chains
def get_exploit_chains_by_risk(self, min_risk: float = 0.0) -> List[ExploitChain]:
"""按风险获取漏洞利用链"""
return [chain for chain in self.exploit_chains if chain.total_risk >= min_risk]
def generate_fix_recommendations(self, chain: ExploitChain) -> List[str]:
"""生成修复建议"""
recommendations = []
for vuln in chain.vulns:
recommendations.append(f"修复漏洞 {vuln.vuln_id}({vuln.name}),CVSS 评分:{vuln.cvss_score}")
recommendations.append(f"总体修复建议:优先修复 CVSS 评分高的漏洞,打破漏洞利用链")
return recommendations
# 示例使用
if __name__ == "__main__":
# 配置日志
logging.basicConfig(level=logging.INFO)
# 创建漏洞利用链分析器
analyzer = MCPExploitChainAnalyzer()
# 添加漏洞
vuln1 = Vulnerability(
vuln_id="vuln_001",
name="身份认证绕过",
description="攻击者可以绕过 MCP Server 的身份认证机制",
severity="critical",
component="server",
cvss_score=9.8,
attack_vector="API 调用"
)
analyzer.add_vulnerability(vuln1)
vuln2 = Vulnerability(
vuln_id="vuln_002",
name="工具越权",
description="攻击者可以通过特定工具执行超出权限的操作",
severity="high",
component="host",
cvss_score=8.5,
attack_vector="工具调用"
)
analyzer.add_vulnerability(vuln2)
vuln3 = Vulnerability(
vuln_id="vuln_003",
name="沙箱逃逸",
description="攻击者可以从 Docker 沙箱中逃逸",
severity="critical",
component="host",
cvss_score=9.0,
attack_vector="沙箱环境"
)
analyzer.add_vulnerability(vuln3)
vuln4 = Vulnerability(
vuln_id="vuln_004",
name="命令注入",
description="攻击者可以通过工具参数注入恶意命令",
severity="high",
component="tool",
cvss_score=8.0,
attack_vector="参数注入"
)
analyzer.add_vulnerability(vuln4)
# 建立漏洞关联
vuln1.add_related_vuln("vuln_002")
vuln2.add_related_vuln("vuln_003")
vuln3.add_related_vuln("vuln_004")
vuln1.add_related_vuln("vuln_004")
# 分析漏洞利用链
chains = analyzer.analyze_exploit_chains()
# 输出结果
print(f"\nFound {len(chains)} exploit chains:")
for chain in chains:
print(f"\nExploit Chain {chain.chain_id}:")
print(f" Total Risk: {chain.total_risk}")
print(f" Attack Path: {' -> '.join(chain.attack_path)}")
print(" Vulnerabilities:")
for vuln in chain.vulns:
print(f" - {vuln.name} (ID: {vuln.vuln_id}, CVSS: {vuln.cvss_score})")
# 生成修复建议
recommendations = analyzer.generate_fix_recommendations(chain)
print(" Fix Recommendations:")
for rec in recommendations:
print(f" - {rec}")
# 按风险获取漏洞利用链
high_risk_chains = analyzer.get_exploit_chains_by_risk(min_risk=15.0)
print(f"\nHigh risk chains (>= 15.0): {len(high_risk_chains)}")# mcp_attack_simulation.py
from typing import Dict, List, Optional
import logging
import json
from datetime import datetime
# 导入前面实现的模块
from mcp_attack_manager import MCPAttackManager, AttackScenario
from mcp_scenario_generator import AIScenarioGenerator, ThreatIntelligence
from mcp_exploit_chain_analyzer import MCPExploitChainAnalyzer, Vulnerability
class MCPAttackSimulationSystem:
def __init__(self):
# 初始化各个模块
self.attack_manager = MCPAttackManager()
self.scenario_generator = AIScenarioGenerator()
self.exploit_analyzer = MCPExploitChainAnalyzer()
self.logger = logging.getLogger("mcp_attack_simulation")
self.logger.info("MCP Attack Simulation System initialized")
def initialize(self):
"""初始化系统"""
self.logger.info("Initializing MCP Attack Simulation System")
# 添加威胁情报
self._add_threat_intelligence()
# 添加示例漏洞
self._add_sample_vulnerabilities()
self.logger.info("MCP Attack Simulation System initialized successfully")
def _add_threat_intelligence(self):
"""添加威胁情报"""
# 身份伪造威胁
ti1 = ThreatIntelligence(
threat_id="ti_001",
threat_type="身份伪造",
description="攻击者伪造合法用户身份,获取未授权访问权限",
severity="high",
attack_vector="API 调用",
mitigation="加强身份验证,使用 MFA,定期轮换凭证"
)
self.scenario_generator.add_threat_intelligence(ti1)
# 工具越权威胁
ti2 = ThreatIntelligence(
threat_id="ti_002",
threat_type="工具越权",
description="攻击者利用工具漏洞,执行超出权限范围的操作",
severity="critical",
attack_vector="工具调用",
mitigation="实施最小权限原则,加强工具权限管理"
)
self.scenario_generator.add_threat_intelligence(ti2)
# 沙箱逃逸威胁
ti3 = ThreatIntelligence(
threat_id="ti_003",
threat_type="沙箱逃逸",
description="攻击者从沙箱环境中逃逸,执行恶意代码",
severity="critical",
attack_vector="沙箱环境",
mitigation="加强沙箱隔离,定期更新沙箱环境"
)
self.scenario_generator.add_threat_intelligence(ti3)
# 命令注入威胁
ti4 = ThreatIntelligence(
threat_id="ti_004",
threat_type="命令注入",
description="攻击者通过工具参数注入恶意命令",
severity="high",
attack_vector="参数注入",
mitigation="加强参数验证和过滤"
)
self.scenario_generator.add_threat_intelligence(ti4)
# 拒绝服务威胁
ti5 = ThreatIntelligence(
threat_id="ti_005",
threat_type="拒绝服务",
description="攻击者通过大量请求导致 MCP 系统崩溃",
severity="medium",
attack_vector="资源耗尽",
mitigation="实施速率限制,优化系统性能"
)
self.scenario_generator.add_threat_intelligence(ti5)
def _add_sample_vulnerabilities(self):
"""添加示例漏洞"""
# 添加示例漏洞,用于漏洞利用链分析
vuln1 = Vulnerability(
vuln_id="vuln_001",
name="身份认证绕过",
description="攻击者可以绕过 MCP Server 的身份认证机制",
severity="critical",
component="server",
cvss_score=9.8,
attack_vector="API 调用"
)
self.exploit_analyzer.add_vulnerability(vuln1)
vuln2 = Vulnerability(
vuln_id="vuln_002",
name="工具越权",
description="攻击者可以通过特定工具执行超出权限的操作",
severity="high",
component="host",
cvss_score=8.5,
attack_vector="工具调用"
)
self.exploit_analyzer.add_vulnerability(vuln2)
vuln3 = Vulnerability(
vuln_id="vuln_003",
name="沙箱逃逸",
description="攻击者可以从 Docker 沙箱中逃逸",
severity="critical",
component="host",
cvss_score=9.0,
attack_vector="沙箱环境"
)
self.exploit_analyzer.add_vulnerability(vuln3)
vuln4 = Vulnerability(
vuln_id="vuln_004",
name="命令注入",
description="攻击者可以通过工具参数注入恶意命令",
severity="high",
component="tool",
cvss_score=8.0,
attack_vector="参数注入"
)
self.exploit_analyzer.add_vulnerability(vuln4)
# 建立漏洞关联
vuln1.add_related_vuln("vuln_002")
vuln2.add_related_vuln("vuln_003")
vuln3.add_related_vuln("vuln_004")
vuln1.add_related_vuln("vuln_004")
def generate_attack_scenarios(self, mcp_system_info: Dict, count: int = 5) -> List[Dict]:
"""生成攻击场景"""
self.logger.info(f"Generating {count} attack scenarios")
scenarios = []
for i in range(count):
scenario_dict = self.scenario_generator.generate_scenario(mcp_system_info)
if scenario_dict:
# 转换为 AttackScenario 对象并添加到攻击管理器
scenario = AttackScenario(
scenario_id=scenario_dict["scenario_id"],
name=scenario_dict["name"],
description=scenario_dict["description"],
attack_type=scenario_dict["attack_type"],
target=scenario_dict["target"],
payload=scenario_dict["payload"],
expected_result=scenario_dict["expected_result"],
severity=scenario_dict["severity"]
)
self.attack_manager.add_scenario(scenario)
scenarios.append(scenario_dict)
self.logger.info(f"Generated {len(scenarios)} attack scenarios")
return scenarios
def run_attack_simulation(self, scenario_ids: List[str] = None) -> List[str]:
"""运行攻防模拟"""
self.logger.info("Running attack simulation")
# 如果没有指定场景 ID,运行所有场景
if not scenario_ids:
scenario_ids = [scenario.scenario_id for scenario in self.attack_manager.scenarios.values()]
result_ids = []
for scenario_id in scenario_ids:
if scenario_id in self.attack_manager.scenarios:
result_id = self.attack_manager.run_scenario(scenario_id)
result_ids.append(result_id)
else:
self.logger.warning(f"Scenario {scenario_id} not found")
self.logger.info(f"Attack simulation completed, {len(result_ids)} scenarios executed")
return result_ids
def analyze_exploit_chains(self) -> List[Dict]:
"""分析漏洞利用链"""
self.logger.info("Analyzing exploit chains")
chains = self.exploit_analyzer.analyze_exploit_chains()
# 转换为字典格式
chain_dicts = [chain.to_dict() for chain in chains]
self.logger.info(f"Exploit chain analysis completed, found {len(chain_dicts)} chains")
return chain_dicts
def generate_report(self) -> Dict:
"""生成攻防模拟报告"""
self.logger.info("Generating attack simulation report")
# 获取所有攻击场景
scenarios = self.attack_manager.get_all_scenarios()
# 获取所有攻击结果
results = self.attack_manager.get_all_results()
# 分析漏洞利用链
exploit_chains = self.analyze_exploit_chains()
# 生成报告
report = {
"report_id": f"report_{datetime.now().timestamp()}",
"generated_at": datetime.now().isoformat(),
"scenarios": {
"total": len(scenarios),
"list": scenarios
},
"results": {
"total": len(results),
"list": results,
"success_rate": self._calculate_success_rate(results)
},
"exploit_chains": {
"total": len(exploit_chains),
"list": exploit_chains,
"high_risk_chains": len([chain for chain in exploit_chains if chain["total_risk"] >= 15.0])
},
"recommendations": self._generate_recommendations(scenarios, results, exploit_chains)
}
self.logger.info(f"Attack simulation report generated: {report['report_id']}")
return report
def _calculate_success_rate(self, results: List[Dict]) -> float:
"""计算攻击成功率"""
if not results:
return 0.0
success_count = sum(1 for result in results if result["is_success"])
return (success_count / len(results)) * 100
def _generate_recommendations(self, scenarios: List[Dict], results: List[Dict],
exploit_chains: List[Dict]) -> List[str]:
"""生成修复建议"""
recommendations = []
# 基于攻击结果生成建议
for result in results:
if result["is_success"]:
scenario = next((s for s in scenarios if s["scenario_id"] == result["scenario_id"]), None)
if scenario:
recommendations.append(f"修复 {scenario['attack_type']} 攻击漏洞,该攻击已成功执行")
# 基于漏洞利用链生成建议
for chain in exploit_chains:
if chain["total_risk"] >= 15.0:
recommendations.append(f"优先修复风险值为 {chain['total_risk']} 的漏洞利用链:{' -> '.join(chain['attack_path'])}")
# 通用建议
recommendations.append("加强 MCP 系统的身份认证机制,使用 MFA")
recommendations.append("实施最小权限原则,限制工具的访问权限")
recommendations.append("加强沙箱隔离,定期更新沙箱环境")
recommendations.append("对工具参数进行严格验证和过滤,防止注入攻击")
recommendations.append("定期进行攻防模拟测试,及时发现和修复漏洞")
# 去重
recommendations = list(dict.fromkeys(recommendations))
return recommendations
# 示例使用
if __name__ == "__main__":
# 配置日志
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
# 创建 MCP 攻防模拟系统
simulation_system = MCPAttackSimulationSystem()
# 初始化系统
simulation_system.initialize()
# MCP 系统信息
mcp_system_info = {
"components": ["client", "server", "host"],
"tools": ["file_reader", "command_executor", "network_scanner"],
"version": "v2.0"
}
print("1. 生成攻击场景...")
scenarios = simulation_system.generate_attack_scenarios(mcp_system_info, count=3)
print(f"生成了 {len(scenarios)} 个攻击场景:")
for i, scenario in enumerate(scenarios):
print(f" {i+1}. {scenario['name']} (ID: {scenario['scenario_id']})")
print("\n2. 运行攻防模拟...")
result_ids = simulation_system.run_attack_simulation()
print(f"运行了 {len(result_ids)} 个攻击场景,结果 ID:{result_ids}")
print("\n3. 分析漏洞利用链...")
exploit_chains = simulation_system.analyze_exploit_chains()
print(f"发现了 {len(exploit_chains)} 条漏洞利用链")
print("\n4. 生成攻防模拟报告...")
report = simulation_system.generate_report()
print(f"报告生成成功,ID:{report['report_id']}")
# 输出报告摘要
print("\n报告摘要:")
print(f" 生成时间:{report['generated_at']}")
print(f" 攻击场景总数:{report['scenarios']['total']}")
print(f" 攻击结果总数:{report['results']['total']}")
print(f" 攻击成功率:{report['results']['success_rate']:.2f}%")
print(f" 漏洞利用链总数:{report['exploit_chains']['total']}")
print(f" 高风险漏洞利用链:{report['exploit_chains']['high_risk_chains']}")
print("\n修复建议:")
for i, rec in enumerate(report['recommendations']):
print(f" {i+1}. {rec}")
# 保存报告到文件
report_file = f"attack_simulation_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
with open(report_file, 'w', encoding='utf-8') as f:
json.dump(report, f, indent=2, ensure_ascii=False)
print(f"\n报告已保存到文件:{report_file}")方案类型 | 优势 | 劣势 | 适用场景 |
|---|---|---|---|
传统渗透测试 | 深入全面,能够发现复杂漏洞 | 耗时耗力,成本高,无法覆盖所有场景 | 关键系统,定期测试 |
自动化漏洞扫描 | 快速高效,成本低,可定期执行 | 只能发现已知漏洞,误报率高,无法发现复杂漏洞利用链 | 大规模系统,定期扫描 |
红队评估 | 模拟真实攻击,能够发现深层问题,评估系统韧性 | 成本高,周期长,需要专业团队 | 高端客户,重要项目 |
MCP 攻防模拟 | 专门针对 MCP 设计,支持动态场景生成,自动化执行,能够发现 MCP 特有的漏洞 | 实现复杂,需要专业团队,目前成熟度较低 | MCP v2.0 框架 |
方案类型 | 优势 | 劣势 | 适用场景 |
|---|---|---|---|
人工生成 | 针对性强,能够覆盖特定场景 | 耗时耗力,场景数量有限,难以覆盖所有可能场景 | 特定测试需求 |
模板生成 | 快速高效,能够生成大量场景 | 场景固定,缺乏灵活性,无法适应新的威胁 | 常规测试 |
AI 动态生成 | 能够自动生成多样化的场景,适应新的威胁,场景数量多 | 生成的场景可能存在不合理之处,需要验证 | MCP 攻防模拟 |
方案类型 | 优势 | 劣势 | 适用场景 |
|---|---|---|---|
人工分析 | 能够深入分析复杂的漏洞利用链,理解攻击的本质 | 耗时耗力,无法处理大量漏洞,容易遗漏 | 关键漏洞分析 |
静态分析 | 快速高效,能够处理大量漏洞 | 只能发现表面关联,无法发现复杂的漏洞利用链 | 初步漏洞分析 |
图形化分析 | 能够可视化展示漏洞利用链,便于理解和分析 | 实现复杂,需要专业工具 | MCP 漏洞利用链分析 |
风险类型 | 缓解策略 |
|---|---|
误报和漏报 | 1. 结合多种检测方法,提高检测的准确性2. 定期更新攻击脚本和场景,适应新的威胁3. 对检测结果进行人工验证,减少误报和漏报 |
系统影响 | 1. 在测试环境中进行攻防模拟,避免影响生产系统2. 控制攻击强度和频率,减少对系统的影响3. 制定应急计划,在系统受到影响时能够及时恢复 |
攻击面扩大 | 1. 对攻防模拟系统本身进行严格的安全保护2. 限制攻防模拟系统的访问权限,只允许授权人员访问3. 定期对攻防模拟系统进行安全评估和测试 |
数据泄露风险 | 1. 在测试环境中使用模拟数据,避免使用真实敏感数据2. 对攻防模拟过程中产生的数据进行加密和保护3. 制定数据处理政策,确保数据的安全使用和销毁 |
成本问题 | 1. 采用开源工具和框架,降低建设成本2. 实现自动化执行,减少人力成本3. 优先测试关键组件和功能,提高测试效率 |
参考链接:
附录(Appendix):
环境要求
安装步骤
# 安装依赖
pip install fastapi uvicorn sqlalchemy pydantic redis psycopg2-binary python-dotenv
# 配置攻防模拟系统
cp config.example.yaml config.yaml
# 编辑配置文件
vim config.yaml
# 启动基础设施服务
docker-compose up -d postgresql redis grafana
# 初始化数据库
python init_db.py --config config.yaml
# 启动攻防模拟服务
python mcp_attack_simulation_service.py --config config.yaml
# 启动监测代理
python mcp_monitoring_agent.py --config config.yamlAPI 文档
关键词: MCP v2.0, 攻防模拟, 动态威胁场景, 漏洞利用链, 安全测试, 渗透测试