我试图在Tensorflow 2.X中使用这种方法来加载不适合内存的大型数据集。
我有一个包含图像的X子文件夹。每个子文件夹都是一个类。
\dataset
-\class1
-img1_1.jpg
-img1_2.jpg
-...
-\classe2
-img2_1.jpg
-img2_2.jpg
-...
我从文件夹中创建数据生成器,如下所示:
train_data_gen = image_generator.flow_from_directory(directory="path\\to\\dataset",
batch_size=100,
shuffle=True,
target_size=(100, 100), # Image H x W
classes=list(CLASS_NAMES)) # list of folder/class names ["class1", "class2", ...., "classX"]
发现629幅图像,分属于2类。
我做了一个更小的数据集来测试管道。在两个类中只有629幅图像。现在我可以创建这样一个虚拟模型:
model = tf.keras.Sequential()
model.add(Dense(1, activation=activation, input_shape=(100, 100, 3))) # only 1 layer of 1 neuron
model.add(Dense(2)) # 2classes
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=['categorical_accuracy'])
编译后,我试着适应这个虚拟模型:
STEPS_PER_EPOCH = np.ceil(image_count / batch_size) # 629 / 100
model.fit_generator(generator=train_data_gen , steps_per_epoch=STEPS_PER_EPOCH, epochs=2, verbose=1)
1/7 [===>..........................] - ETA: 2s - loss: 1.1921e-07 - categorical_accuracy: 0.9948
2/7 [=======>......................] - ETA: 1s - loss: 1.1921e-07 - categorical_accuracy: 0.5124
3/7 [===========>..................] - ETA: 0s - loss: 1.1921e-07 - categorical_accuracy: 0.3449
4/7 [================>.............] - ETA: 0s - loss: 1.1921e-07 - categorical_accuracy: 0.2662
5/7 [====================>.........] - ETA: 0s - loss: 1.1921e-07 - categorical_accuracy: 0.2130
6/7 [========================>.....] - ETA: 0s - loss: 1.1921e-07 - categorical_accuracy: 0.1808
2020-04-14 20:39:48.629203: W tensorflow/core/framework/op_kernel.cc:1610]无效论点: ValueError:
generator
产生了一个形状元素(29、100、100、3),其中预计有一个形状元素(100、100、100、3)。
据我所知,最后一批的形状和以前的批次不一样。所以它坠毁了。我试图指定一个batch_input_shape
。
model.add(Dense(1, activation=activation, batch_input_shape=(None, 100, 100, 3)))
我已经找到了这里,我应该将None
放在不指定批处理中的元素数的位置,这样它就可以是动态的。但没有成功。
编辑:从评论中我犯了两个错误:
fit_generator
提供了一个tf.data.Dataset.from_generator
,但是我在这里给了一个image_generator.flow_from_directory
。以下是最终代码:
train_data_gen = image_generator.flow_from_directory(directory="path\\to\\dataset",
batch_size=1000,
shuffle=True,
target_size=(100, 100),
classes=list(CLASS_NAMES))
train_dataset = tf.data.Dataset.from_generator(
lambda: train_data_gen,
output_types=(tf.float32, tf.float32),
output_shapes=([None, x, y, 3],
[None, len(CLASS_NAMES)]))
model = tf.keras.Sequential()
model.add(Flatten(batch_input_shape=(None, 100, 100, 3)))
model.add(Dense(1, activation=activation))
model.add(Dense(2))
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=['categorical_accuracy'])
STEPS_PER_EPOCH = np.ceil(image_count / batch_size) # 629 / 100
model.fit_generator(generator=train_data_gen , steps_per_epoch=STEPS_PER_EPOCH, epochs=2, verbose=1)
发布于 2020-05-28 08:19:29
为了社区的利益,我解释了如何使用image_generator
在Tensorflow中使用input_shape (100, 100, 3)
和使用dogs vs cats
数据集
如果我们没有选择合适的批次大小,那么在第一个时代之后就有可能建立模型,因此我将从how to choose batch_size ?
开始我的解释。
我们一般认为batch size
是power of 2
,这是因为优化矩阵运算库的有效工作。这一点在这研究论文中得到了进一步的阐述。
查看这博客,它描述了如何选择正确的batch size
,同时比较不同批处理大小对CIFAR-10数据集accuracy
的影响。
下面是具有输出的端到端工作代码
import os
import numpy as np
from keras import layers
import pandas as pd
from tensorflow.keras.layers import Input, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D
from tensorflow.keras.layers import AveragePooling2D, MaxPooling2D, Dropout, GlobalMaxPooling2D, GlobalAveragePooling2D
from tensorflow.keras.models import Sequential
from tensorflow.keras import regularizers, optimizers
from tensorflow.keras.preprocessing import image
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import keras.backend as K
K.set_image_data_format('channels_last')
train_dir = '/content/drive/My Drive/Dogs_Vs_Cats/train'
test_dir = '/content/drive/My Drive/Dogs_Vs_Cats/test'
img_width, img_height = 100, 100
input_shape = img_width, img_height, 3
train_samples = 2000
test_samples = 1000
epochs = 30
batch_size = 32
train_datagen = ImageDataGenerator(
rescale = 1. /255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(
rescale = 1. /255)
train_data = train_datagen.flow_from_directory(
train_dir,
target_size = (img_width, img_height),
batch_size = batch_size,
class_mode = 'binary')
test_data = test_datagen.flow_from_directory(
test_dir,
target_size = (img_width, img_height),
batch_size = batch_size,
class_mode = 'binary')
model = Sequential()
model.add(Conv2D(32, (7, 7), strides = (1, 1), input_shape = input_shape))
model.add(BatchNormalization(axis = 3))
model.add(Activation('relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (7, 7), strides = (1, 1)))
model.add(BatchNormalization(axis = 3))
model.add(Activation('relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.summary()
model.compile(loss = 'binary_crossentropy',
optimizer = 'rmsprop',
metrics = ['accuracy'])
model.fit_generator(
train_data,
steps_per_epoch = train_samples//batch_size,
epochs = epochs,
validation_data = test_data,
verbose = 1,
validation_steps = test_samples//batch_size)
输出:
Found 2000 images belonging to 2 classes.
Found 1000 images belonging to 2 classes.
Model: "sequential_5"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_8 (Conv2D) (None, 94, 94, 32) 4736
_________________________________________________________________
batch_normalization_8 (Batch (None, 94, 94, 32) 128
_________________________________________________________________
activation_8 (Activation) (None, 94, 94, 32) 0
_________________________________________________________________
max_pooling2d_8 (MaxPooling2 (None, 47, 47, 32) 0
_________________________________________________________________
conv2d_9 (Conv2D) (None, 41, 41, 64) 100416
_________________________________________________________________
batch_normalization_9 (Batch (None, 41, 41, 64) 256
_________________________________________________________________
activation_9 (Activation) (None, 41, 41, 64) 0
_________________________________________________________________
max_pooling2d_9 (MaxPooling2 (None, 20, 20, 64) 0
_________________________________________________________________
flatten_4 (Flatten) (None, 25600) 0
_________________________________________________________________
dense_11 (Dense) (None, 64) 1638464
_________________________________________________________________
dropout_4 (Dropout) (None, 64) 0
_________________________________________________________________
dense_12 (Dense) (None, 1) 65
=================================================================
Total params: 1,744,065
Trainable params: 1,743,873
Non-trainable params: 192
_________________________________________________________________
Epoch 1/30
62/62 [==============================] - 14s 225ms/step - loss: 1.8307 - accuracy: 0.4853 - val_loss: 0.6931 - val_accuracy: 0.5000
Epoch 2/30
62/62 [==============================] - 14s 226ms/step - loss: 0.7085 - accuracy: 0.4832 - val_loss: 0.6931 - val_accuracy: 0.5010
Epoch 3/30
62/62 [==============================] - 14s 218ms/step - loss: 0.6955 - accuracy: 0.5300 - val_loss: 0.6894 - val_accuracy: 0.5292
Epoch 4/30
62/62 [==============================] - 14s 221ms/step - loss: 0.6938 - accuracy: 0.5407 - val_loss: 0.7309 - val_accuracy: 0.5262
Epoch 5/30
62/62 [==============================] - 14s 218ms/step - loss: 0.6860 - accuracy: 0.5498 - val_loss: 0.6776 - val_accuracy: 0.5665
Epoch 6/30
62/62 [==============================] - 13s 216ms/step - loss: 0.7027 - accuracy: 0.5407 - val_loss: 0.6895 - val_accuracy: 0.5101
Epoch 7/30
62/62 [==============================] - 13s 216ms/step - loss: 0.6852 - accuracy: 0.5528 - val_loss: 0.6567 - val_accuracy: 0.5887
Epoch 8/30
62/62 [==============================] - 13s 217ms/step - loss: 0.6772 - accuracy: 0.5427 - val_loss: 0.6643 - val_accuracy: 0.5847
Epoch 9/30
62/62 [==============================] - 13s 217ms/step - loss: 0.6709 - accuracy: 0.5534 - val_loss: 0.6623 - val_accuracy: 0.5887
Epoch 10/30
62/62 [==============================] - 14s 219ms/step - loss: 0.6579 - accuracy: 0.5711 - val_loss: 0.6614 - val_accuracy: 0.6058
Epoch 11/30
62/62 [==============================] - 13s 218ms/step - loss: 0.6591 - accuracy: 0.5625 - val_loss: 0.6594 - val_accuracy: 0.5454
Epoch 12/30
62/62 [==============================] - 13s 216ms/step - loss: 0.6419 - accuracy: 0.5767 - val_loss: 1.1041 - val_accuracy: 0.5161
Epoch 13/30
62/62 [==============================] - 13s 215ms/step - loss: 0.6479 - accuracy: 0.5783 - val_loss: 0.6441 - val_accuracy: 0.5837
Epoch 14/30
62/62 [==============================] - 13s 216ms/step - loss: 0.6373 - accuracy: 0.5899 - val_loss: 0.6427 - val_accuracy: 0.6310
Epoch 15/30
62/62 [==============================] - 13s 215ms/step - loss: 0.6203 - accuracy: 0.6133 - val_loss: 0.7390 - val_accuracy: 0.6220
Epoch 16/30
62/62 [==============================] - 13s 217ms/step - loss: 0.6277 - accuracy: 0.6362 - val_loss: 0.6649 - val_accuracy: 0.5786
Epoch 17/30
62/62 [==============================] - 13s 215ms/step - loss: 0.6155 - accuracy: 0.6316 - val_loss: 0.9823 - val_accuracy: 0.5484
Epoch 18/30
62/62 [==============================] - 14s 222ms/step - loss: 0.6056 - accuracy: 0.6408 - val_loss: 0.6333 - val_accuracy: 0.6048
Epoch 19/30
62/62 [==============================] - 14s 218ms/step - loss: 0.6025 - accuracy: 0.6529 - val_loss: 0.6514 - val_accuracy: 0.6442
Epoch 20/30
62/62 [==============================] - 13s 215ms/step - loss: 0.6149 - accuracy: 0.6423 - val_loss: 0.6373 - val_accuracy: 0.6048
Epoch 21/30
62/62 [==============================] - 13s 215ms/step - loss: 0.6030 - accuracy: 0.6519 - val_loss: 0.6086 - val_accuracy: 0.6573
Epoch 22/30
62/62 [==============================] - 13s 217ms/step - loss: 0.5936 - accuracy: 0.6865 - val_loss: 1.0677 - val_accuracy: 0.5605
Epoch 23/30
62/62 [==============================] - 13s 214ms/step - loss: 0.5964 - accuracy: 0.6728 - val_loss: 0.7927 - val_accuracy: 0.5877
Epoch 24/30
62/62 [==============================] - 13s 215ms/step - loss: 0.5866 - accuracy: 0.6707 - val_loss: 0.6116 - val_accuracy: 0.6421
Epoch 25/30
62/62 [==============================] - 13s 214ms/step - loss: 0.5933 - accuracy: 0.6662 - val_loss: 0.8282 - val_accuracy: 0.6048
Epoch 26/30
62/62 [==============================] - 13s 214ms/step - loss: 0.5705 - accuracy: 0.6885 - val_loss: 0.5806 - val_accuracy: 0.6966
Epoch 27/30
62/62 [==============================] - 14s 218ms/step - loss: 0.5709 - accuracy: 0.7017 - val_loss: 1.2404 - val_accuracy: 0.5333
Epoch 28/30
62/62 [==============================] - 13s 216ms/step - loss: 0.5691 - accuracy: 0.7104 - val_loss: 0.6136 - val_accuracy: 0.6442
Epoch 29/30
62/62 [==============================] - 13s 215ms/step - loss: 0.5627 - accuracy: 0.7048 - val_loss: 0.6936 - val_accuracy: 0.6613
Epoch 30/30
62/62 [==============================] - 13s 214ms/step - loss: 0.5714 - accuracy: 0.6941 - val_loss: 0.5872 - val_accuracy: 0.6825
https://stackoverflow.com/questions/61215270
复制相似问题