看懂之后,你会了解 NumPy 数组其实就是一连串横向的元素,用指针来控制维度 (axis) 和每个维度包含的元素个数 (shape)。...DataFrame 数据帧可以看成是 数据帧 = 二维数组 + 行索引 + 列索引 在 Pandas 里出戏的就是行索引和列索引,它们 可基于位置 (at, loc),可基于标签 (iat...---- HOW WELL 比如在讲拆分-应用-结合 (split-apply-combine) 时,我会先从数据帧上的 sum() 或 mean() 函数引出无条件聚合,但通常希望有条件地在某些标签或索引上进行聚合...这波操作称被 Hadley Wickham 称之为拆分-应用-结合,具体而言,该过程有三步: 在 split 步骤:将数据帧按照指定的“键”分组 在 apply 步骤:在各组上平行执行四类操作: 整合型...agg() 函数 转换型 transform() 函数 筛选型 filter() 函数 通用型 apply() 函数 在 combine 步骤:操作之后的每个数据帧自动合并成一个总体数据帧 一图胜千言
sertes标签索引 和 series默认的position 类型是否一致,当都为int64时,默认的position会被定义的索引覆盖,此时在通过series[x] 访问需要注意不能使用默认的position...一是通过iloc 索引访问,只能接受整数索引,也不能添加逻辑判断的过滤条件,但它不受标签值的影响可以一直通过整数索引访问,在对series排序后如果想获取首个元素,就可以通过iloc 来访问,因为此时标签的顺序已经改变...访问dataframe 元素的方式 # 获取dataframe 一列的数据 df['日期'] # 获取dataframe 几列的数据 df[['x', 'y']] # 同样的也可以使用loc 按标签取...['a', 'c'] # 按标签信息,传入行列标签索引信息 获取具体某个数据 df.iat[1, 2] # 按位置信息,传入行列位置信息,获取具体某个数据 # 新版本中pandas中 df 似乎不能使用...而且,这个一般会有一个inplace 的参数值指明是否是在原有基础上修改。
loc和iloc的显式特性,使它们在维护清晰可读的代码时非常有用;特别是在整数索引的情况下,我建议使用这两者,来使代码更容易阅读和理解,并防止由于混合索引/切片约定而导致的细微错误。...数据帧中的数据选择 回想一下,DataFrame在很多方面都类似二维或结构化数组,在其它方面莱斯共享相同索引的Series结构的字典。在我们探索此结构中的数据选择时,记住些类比是有帮助的。...作为字典的数据帧 我们将考虑的第一个类比是,DataFrame作为相关Series对象的字典。...作为二维数组的数据帧 如前所述,我们还可以将DataFrame视为扩展的二维数组。...,我建议花一些时间使用简单的DataFrame,并探索各种索引方法所允许的索引,切片,掩码和花式索引。
Numpy中的一维数组也有隐式定义的整数索引,可以通过它获取元素值,而Series用一种显式定义的索引与元素关联。...通过各种方式访问Series数据,系列中的数据可以使用类似于访问numpy中的ndarray中的数据来访问。...Series有很多的聚合函数,可以方便的统计最大值、求和、平均值等 [4c686eea24071932103c426df1fe648f.png] 二、DataFrame(数据帧) DataFrame是...Pandas中使用最频繁的核心数据结构,表示的是二维的矩阵数据表,类似关系型数据库的结构,每一列可以是不同的值类型,比如数值、字符串、布尔值等等。...,如果要复杂的查找替换,可以使用map()、apply()和 applymap() data.replace(‘GD’, ‘GDS’) df.loc[df.a>50, ‘a’]=888 [90fbf8185bfdf12b71ecae2a2a7b5c10
在继续学习之前,我会建议你阅读一下数据挖掘(data exploration)的代码。为了帮助你更好地理解,我使用了一个数据集来执行这些数据操作和处理。...例如,我们想获得一份完整的没有毕业并获得贷款的女性名单。这里可以使用布尔索引实现。你可以使用以下代码: ? ? # 2–Apply函数 Apply是一个常用函数,用于处理数据和创建新变量。...在利用某些函数传递一个数据帧的每一行或列之后,Apply函数返回相应的值。该函数可以是系统自带的,也可以是用户定义的。举个例子,它可以用来找到任一行或者列的缺失值。 ? ?...多索引需要在loc中声明的定义分组的索引元组。这个元组会在函数中用到。 2. .values[0]后缀是必需的,因为默认情况下元素返回的索引与原数据框的索引不匹配。在这种情况下,直接赋值会出错。...另外,我希望这能提供一些直觉,即到底为什么哪怕0.05%的精度提升,可造成Kaggle排行榜(数据分析竞赛网站——译者注)上的名次上升500位。
将数据导入Pandas 在我们开始挖掘与分析之前,我们首先需要导入能够处理的数据。幸好,Pandas在这一点要比Numpy更方便。 在这里我推荐你使用自己所感兴趣的数据集来使用。...在Pandas中,一个条目等同于一行,所以我们可以通过len方法获取数据的行数,即条目数。 ? 这将给你一个整数告诉你数据的行数。在我的数据集中,我有33行。...不使用空格和横线等可以让我们以访问类属性相同的方法来访问列,即使用点运算符。 ? 这里返回的结果和之前的一模一样,即一个包含我们所选列的数据的series。...正如loc和iloc,上述代码将返回一个series包含你所索引的行的数据。 既然ix可以完成loc和iloc二者的工作,为什么还需要它们呢?最主要的原因是ix有一些轻微的不可预测性。...这便是使用apply的方法,即如何对一列应用一个函数。如果你想对整个数据集应用某个函数,你可以使用dataset.applymap()。
针对行、列或者所有数据的操作 data['column_1'].map(1en) len()函数会应用到’column_1’列下的每一个元素。 .map()操作会将一个函数应用到指定列的每一个元素。...tqdm是一个非常有用的库,能够预测这些操作什么时候执行结束。(好吧,我说谎了,我之前说过我们只用pandas库)。可以使用 ” pip install tqdm” 命令安装tqdm。...这就是在Jupyter中使用tqdm和pandas之后可以看到的进度条。...分组功能 刚开始使用这个功能的时候并不容易,你首先需要掌握一些语法知识,之后你会发现自己再也离不开这个功能了。...data.groupby('column_1)['column_2'].apply(sum).reset_index() 基于某一列对数据进行分组,再对另一列上的数据执行一些函数操作。.
为了解决这一问题,我们在代码中查找表对象,并将其作为字符串保存并在之后的分析进行加载。...return infoColumns #对数据帧中所有的歌曲使用scraping函数 forsongIndex in xrange(0,dfs.shape[0]): printsongIndex...当音乐流派可以被识别时,我们就可以抽取关键词列表,之后将它们分入“脏列表”(脏,表示数据还未被清洗——译者注)。这一列表充满了错别字、名称不统一的名词、引用等等。...#添加”key”列,如果key是流派字典的键值则为1,否则为0。拷贝数据帧,使 #用.loc[(tuple)]函数以避免切片链警告。...您也可以使用我们训练好的模型进行验证,模型文件genre_df.p已按照年份保存到对应目录了,在加载模型文件的目录地址一定不要写错了。
pandas 相当于 python 中 excel:它使用表(也就是 dataframe),能在数据上做各种变换,但还有其他很多功能。 如果你早已熟知 python 的使用,可以直接跳到第三段。...更新数据 data.loc[8, column_1 ] = english 将第八行名为 column_1 的列替换为「english」 在一行代码中改变多列的值 好了,现在你可以做一些在 excel....value_counts() 函数输出示例 在所有的行、列或者全数据上进行操作 data[ column_1 ].map(len) len() 函数被应用在了「column_1」列中的每一个元素上...tqdm, 唯一的 在处理大规模数据集时,pandas 会花费一些时间来进行.map()、.apply()、.applymap() 等操作。...tqdm 是一个可以用来帮助预测这些操作的执行何时完成的包(是的,我说谎了,我之前说我们只会使用到 pandas)。
pandas 相当于 python 中 excel:它使用表(也就是 dataframe),能在数据上做各种变换,但还有其他很多功能。 如果你早已熟知 python 的使用,可以直接跳到第三段。...我通常不会去使用其他的函数,像.to_excel, .to_json, .to_pickle 等等,因为.to_csv 就能很好地完成工作,并且 csv 是最常用的表格保存方式。..._1 ].map(len) 复制代码 len() 函数被应用在了「column_1」列中的每一个元素上 .map() 运算给一列中的每一个元素应用一个函数 data[ column_1 ].map(len...tqdm, 唯一的 在处理大规模数据集时,pandas 会花费一些时间来进行.map()、.apply()、.applymap() 等操作。...tqdm 是一个可以用来帮助预测这些操作的执行何时完成的包(是的,我说谎了,我之前说我们只会使用到 pandas)。
机器学习使用训练数据(训练集和验证集)建模,使用测试数据模拟生产环境数据测试模型结果,其建模的假设是:训练数据涵盖了该问题所有的案例数据,即训练数据和测试(生产)数据之间的差异是很小的。...但实际上这个假设是很难成立的,原因: 受限于数据收集方法,不可能收集到该问题的所有案例数据。 模型投产后,生产环境的数据随时间会受到自然环境、政策环境、市场环境等影响而发生变化并且不可预知。...模型的输出很可能是决策的依据,如果模型不能适应新数据,这是很大的风险点。因此,监控数据的稳定性并且及时更新模型是一件很重要的事情。...两个小问题 在机器学习中,回归和分类分别适用什么场景? 归回使用预测值连续的场景。回归问题的目标是找到输入特征与输出值之间的关系,以便能够对未知数据进行预测。房价预测就是个典型的回归问题。...模型评价指标已经能判断模型效果了,为什么还要用 psi 判断要不要重新训练模型? 两种评价的目的不一样,模型指标是判断模型训练的好不好,准确率有多高,能不能投产使用。
该相同的等于运算符可用于在逐个元素的基础上将两个数据帧相互比较。...不幸的是,Pandas 在尝试执行此操作时会引发错误。 我在 GitHub 上给 Pandas 开发团队创建了一个问题,以进行此改进。 计算追踪止损单的价格 本质上,有无数种交易股票的策略。...它指代直接在序列或数据帧之后的括号[]。 例如,给定一个s序列,您可以通过以下方式选择数据:s[item]和s.loc[item]。 第一个使用索引运算符。 第二个使用.loc索引器。...序列的逻辑与数据帧的逻辑稍有不同,实际上更为复杂。 由于其复杂性,最好避免在序列上仅使用索引运算符本身,而应使用显式的.iloc和.loc索引器。...就个人而言,我总是在对行进行切片时使用这些索引器,因为从来没有确切地知道我在做什么。 更多 重要的是要知道,这种延迟切片不适用于列,仅适用于数据帧的行和序列,也不能同时选择行和列。
pandas 相当于 python 中 excel:它使用表(也就是 dataframe),能在数据上做各种变换,但还有其他很多功能。 如果你早已熟知 python 的使用,可以直接跳到第三段。...data.loc[8] 打印出第八行 data.loc[8, 'column_1'] 打印第八行名为「column_1」的列 data.loc[range(4,6)] 第四到第六行(左闭右开)的数据子集....value_counts() 函数输出示例 在所有的行、列或者全数据上进行操作 data['column_1'].map(len) len() 函数被应用在了「column_1」列中的每一个元素上...tqdm, 唯一的 在处理大规模数据集时,pandas 会花费一些时间来进行.map()、.apply()、.applymap() 等操作。...tqdm 是一个可以用来帮助预测这些操作的执行何时完成的包(是的,我说谎了,我之前说我们只会使用到 pandas)。
相反,如果原始数据datetime已经是 ISO 8601 格式了,那么pandas就可以立即使用最快速的方法来解析日期。这也就是为什么提前设置好格式format可以提升这么多。...其次,它使用不透明对象范围(0,len(df))循环,然后在应用apply_tariff()之后,它必须将结果附加到用于创建新DataFrame列的列表中。...然后,当你将这些布尔数组传递给DataFrame的.loc索引器时,你将获得一个仅包含与这些小时匹配的行的DataFrame切片。在那之后,仅仅是将切片乘以适当的费率,这是一种快速的矢量化操作。...在apply_tariff_isin中,我们仍然可以通过调用df.loc和df.index.hour.isin三次来进行一些“手动工作”。...关于在Pandas中使用HDFStore的注意事项:您需要安装PyTables> = 3.0.0,因此在安装Pandas之后,请确保更新PyTables,如下所示: pip install --upgrade
大家好,我是老表~今天给大家分享几个自己近期常用的Pandas数据处理技巧,主打实用,所以你肯定能用的着,建议扫一遍,然后收藏起来,下次要用的时候再查查看即可。...拷贝 > 12 对于列/行的操作 简单说说 Panda是一个快速、强大、灵活且易于使用的开源数据分析和操作工具,在Python环境下,我们可以通过pip直接进行安装。...pip install pandas 在Python代码中使用pandas首先需要导入,: import pandas as pd 创建一个示例数据: # 统计一行/一列数据的负数出现的次数 df...可以查看之前分享的文章Pandas数据分析,你不能不知道的技能 DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None..., args=(), **kwds) > 10 Pandas数据合并 进行数据合并前,首先需要确定合并的数据的表头都是一致的,然后将他们依次加入一个列表,最终使用concat函数即可进行数据合并。
在讨论切片序列之后,让我们谈谈切片数据帧。...对于输入 10,您可能会注意到它的开始类似于上一张幻灯片中的输入 9,但随后我在结果视图上调用了loc,以进一步细分数据。 我将此方法链接的结果保存在df2中。...虽然这些方法适用于具有通用数据类型的数据帧,但是不能保证它们将适用于所有数据帧。 数据帧的函数应用 毫不奇怪,数据帧提供了函数应用的方法。 您应注意两种方法:apply和applymap。...鉴于apply将在每一列上求值提供的函数,因此应准备接收序列,而applymap将分别在数据帧的每个元素上求值pass函数。...毕竟,我们不能用逗号分隔索引的级别,因为我们有第二维,即列。 因此,我们使用元组为切片数据帧的维度提供了说明,并提供了指示如何进行切片的对象。 元组的每个元素可以是数字,字符串或所需元素的列表。
数据清洗需要掌握哪些黑科技 通常我们拿到的数据数据都可以简化为表格模型,无用你是xsl也好,csv亦或json数组也好,都可以利用pandas来读取,读取之后,接下来的工作基本上就是借助在pandas的一些...api来做数据清洗工作了,如下,我读取了一份房价信息的数据表,这份数据当然是我自己根据上一篇文章,利用scrapy做了一个爬虫爬取的咯。...来来,简单的了解一下pandas的一些常用的api了,举例就用: image.png 1、取子集常用操作 image.png 其中,loc是支持按照列名字符串的方式来取子集,iloc支持的是使用数组索引...这个就不演示了,因为我是爬虫爬取数据,所以在爬取的过程中,我已经对数据进行了一些基础的处理,程序控制不可能出现空白数据了,所以,我也是建议,自己写爬虫去获取数据,这些减轻数据清洗环节的压力。...每一个元素的操作,而map是一种让函数作用于Series每一个元素的操作,如下所示,我这里对ege列进行处理了一了,将数字和文本归一化为数字。
现在,我们可以在pandas中表达这些步骤。 使用.loc切片 为了选择DataFrame的子集,我们使用.loc切片语法。...序列就像一维 NumPy 数组,因为我们可以一次在所有元素上执行算术运算。...,并且学会了在pandas中表达以下操作: 操作 pandas 读取 CSV 文件 pd.read_csv() 使用标签或索引来切片 .loc和.iloc 使用谓词对行切片 在.loc中使用布尔值的序列...()是灵活的,但在处理文本数据时,在使用pandas内置的字符串操作函数通常会更快。...我们现在可以将最后一个字母的这一列添加到我们的婴儿数据帧中。
[ 引言 ] 虽然目前dask,cudf等包的出现,使得我们的数据处理大大得到了加速,但是并不是每个人都有比较好的gpu,非常多的朋友仍然还在使用pandas工具包,但有时候真的很无奈,pandas的许多问题我们都需要使用...apply函数来进行处理,而apply函数是非常慢的,本文我们就介绍如何加速apply函数600倍的技巧。...实验对比 01 Apply(Baseline) 我们以Apply为例,原始的Apply函数处理下面这个问题,需要18.4s的时间。...所以我们可以使用Swift进行加速,在使用Swift之后,相同的操作在我的机器上可以提升到7.67s。...如果我们的操作是可以直接向量化的话,那么我们就尽可能的避免使用: for循环; 列表处理; apply等操作 在将上面的问题转化为下面的处理之后,我们的时间缩短为:421 ms。
领取专属 10元无门槛券
手把手带您无忧上云