首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于 Openpose 实现人体动作识别

人体姿态识别作为行为监测重要参考依据在视频捕捉、计算机图形学等领域得到了广泛应用。...其中传统的人体姿态识别方法有RMPE模型和Mask R-CNN模型,它们都是采用自顶向下的检测方法,而Openpose作为姿态识别的经典项目是采用的自底向上的检测方法,主要应用于行为监测、姿态纠正、动作分类...在多人目标姿态识别方面,历史上常见的方法有通过自顶而下的候选关键点查找并结合空间联系优化算法匹配人物以及通过建立部分亲和字段的方法实现关键点检测到人体骨架连接等等。...在此次的模型中通过调用轻量级的openpose模型进行人体姿态识别,其主要的方法是通过openpose获取人体各个骨骼关键点位置,然后通过欧氏距离进行匹配两个骨骼来具体检测到每一个人,对于常见检测中骨骼关键点的缺失可以通过上一帧的骨骼信息进行填充...1.1 Openpose环境的构建 openpose是依赖于卷积神经网络和监督学习实现人体姿态评估算法,其主要的优点在于适用于多人二维且较为精准和迅速的识别开源模型。

5.7K30

如何选购最佳通配符SSL证书?

通配符证书选购攻略.jpg 通配符SSL证书优势 高扩展性 由于一张通配符SSL证书支持保护一个主域名及其所有二级子域名,换句话说,它可以同时确保多个子域名站点的安全,如您后续新增同级子域名,无需再额外付费...以上是通配符SSL证书普遍特点,那么如何选购最佳的通配符证书呢?需要注意哪些方面呢? 选购通配符证书注意事项 1....考虑证书兼容性 一些设备,比如Windows系统的手机不能识别网址中的 "*"标识,导致它们不能打开和运行安装了通配符SSL证书的网站。...所以,选购证书时,也要优先选择能随时提供专业客户服务和技术支持的供应商,以便及时解决您的问题。 4....那么,当您选购某一个CA下的通配符证书时,为避免造成不必要的损失,可以了解一下它的退款服务。 根据上面提到的四条注意事项,相信您能找到满意的通配符SSL证书,实现多个子域名的HTTPS安全加密。

7.5K30
您找到你想要的搜索结果了吗?
是的
没有找到

行为识别——基于骨架提取人体关键点估计的行为识别

行为识别——骨架提取/人体关键点估计 我们可以通过深度学习,检测到一个人,但是那个人在做什么我们不知道。所以我们就想让神经网络既检测到人,又知道他在做什么。也就是对这个人的行为进行识别。...那我们要怎么得到人体的骨架呢。 人体姿态估计的算法已经出了好几年了,现在都已经在研究3D姿态了。 我这里就找了几个2D人体关键点估计的算法,然后讲讲他们在做行为识别会出现的一些问题。...Mobilepose mobilePose就是用轻量级网络来识别人体关键点,而且大部分都是单人姿态估计。...然后说下提取骨架后,行为识别的方法。以前做的时候想了很多方法,当然也研究了很多论文和博客,能够做个总结。 基于单帧图像的骨架: 人体骨架的数据,(坐标点或者向量)进行训练。...LSTM :参考这篇,人体骨架检测+LSTM。

2.7K10

人体行为识别人体姿态估计AI算法模型介绍及场景应用

人体行为识别检测上,AI智能分析网关V4可支持:吸烟检测/打手机检测/玩手机检测离岗检测/睡岗检测摔倒检测区域入侵/越界检测/周界入侵区域未停留/区域徘徊在场景应用上,AI智能分析网关V4涉及到人体行为识别的算法可以应用在以下场景和领域中...2)园区/社区/校园/楼宇:自动识别人员的入侵行为及危险行为,提高周界安全防范水平。...Action Recognition Models:一系列针对动作识别任务的深度学习模型,可以识别和分类人体的各种行为。...PyCoral Action Recognition:使用谷歌的Coral加速器实现的动作识别模型,可以在边缘设备上实现实时的行为检测。...DensePose:Facebook开源的人体姿势和密集姿态估计模型,可以对人体的姿势和姿态进行更精细的检测和分析。这些模型和工具提供了丰富的功能和灵活性,可以用于不同领域和应用场景中的行为检测任务。

1100

基于LSTM-CNN的人体活动识别

人体活动识别(HAR)是一种使用人工智能(AI)从智能手表等活动记录设备产生的原始数据中识别人类活动的方法。当人们执行某种动作时,人们佩戴的传感器(智能手表、手环、专用设备等)就会产生信号。...人类活动识别有各种各样的应用,从为病人和残疾人提供帮助到像游戏这样严重依赖于分析运动技能的领域。我们可以将这些人类活动识别技术大致分为两类:固定传感器和移动传感器。...在本文中,我们使用移动传感器产生的原始数据来识别人类活动。...在本文中,我将使用LSTM (Long - term Memory)和CNN (Convolutional Neural Network)来识别下面的人类活动: 下楼 上楼 跑步 坐着 站立 步行 概述...机器学习方法在很大程度上依赖于启发式手动特征提取人类活动识别任务,而我们这里需要做的是端到端的学习,简化了启发式手动提取特征的操作。

1.7K20

基于LSTM-CNN的人体活动识别

来源:DeepHub IMBA本文约3400字,建议阅读10+分钟本文带你使用移动传感器产生的原始数据来识别人类活动。...人体活动识别(HAR)是一种使用人工智能(AI)从智能手表等活动记录设备产生的原始数据中识别人类活动的方法。当人们执行某种动作时,人们佩戴的传感器(智能手表、手环、专用设备等)就会产生信号。...人类活动识别有各种各样的应用,从为病人和残疾人提供帮助到像游戏这样严重依赖于分析运动技能的领域。我们可以将这些人类活动识别技术大致分为两类:固定传感器和移动传感器。...在本文中,我们使用移动传感器产生的原始数据来识别人类活动。...机器学习方法在很大程度上依赖于启发式手动特征提取人类活动识别任务,而我们这里需要做的是端到端的学习,简化了启发式手动提取特征的操作。

1.4K20

【讲座预告】利用NVIDIA Maxine识别人体姿势

利用NVIDIAMaxine识别人体姿势 Time: 2022/05/19  8:00pm~~9.30pm Duration: 1.5h Course Description: 随着AI技术的发展,数字内容创建业务也变得越来越火热...而在这些功能背后,离不开姿势识别,人脸特征点识别,虚拟背景,现实增强等技术的支持。 NVIDIA Maxine是一套GPU加速的SDK,它用人工智能重塑了音频和视频,提升了标准麦克风和摄像头的能力。...使用一个标准的摄像头,使实时身体姿态识别成为可能。能够让您享受有趣、迷人的AR效果。...Webinar您可以了解到: NVIDIA Maxine的功能 NVIDIA Maxine 的API接口 在Windows平台上利用NVIDIAMaxine进行开发 示例:利用NVIDIAMaxine搭建一个人体姿势识别系统...对于图像识别,目标的检测与跟踪完成过多种解决方案。曾经参与GPU 版气象模式GRAPES,是其主要研发者。 扫描二维码报名: 点击阅读原文,了解更多社区讲座 更多关于姿态识别

78420

Python调用腾讯云人体分析实现识别行人

人体分析 腾讯云神图·人体分析(Body Analysis)基于腾讯优图领先的人体分析算法,提供人像分割、人体检测、行人重识别(ReID)等服务。...支持识别图片或视频中的半身人体轮廓,并将其与背景进行分离;支持通过人体检测,识别行人的穿着、体态等属性信息,实现跨摄像头跨场景下行人的识别与检索。...image.png Python调用腾讯云人体分析实现识别行人 过程分析:先上连接大家看一下腾讯的产品 腾讯云的人体分析网址 1.工具 腾讯云的API需要调用的是网上的图片,返回的结果是一串稍微复杂的信息...2.问题 python要画图只能对本地文件画图,而腾讯云的人体分析API需要的是线上的图片(即链接),所以这里我就把线上的图片下载下来放在本地,然后python就可以画图了,所以其实是同一张图。...(可以参照我上一篇文章,把图片上传到对象存储的桶里) 3.步骤总结: 调用腾讯云人体分析API->对返回的数据进行处理并存储->用Python的第三方库画图,框出行人。

1.8K40

基于人体骨架的行为识别【附PPT与视频资料】

关注文章公众号 回复"司晨阳"获取PPT资料 视频资料可点击下方阅读原文在线观看 导读 ---- 基于人体骨架的行为识别是一个重要而且具有挑战性的计算机视觉任务。...人体图像视频不仅包含了复杂的背景,还有光照变化、人体外貌变化等不确定因素,这使得基于图像视频的行为识别具有一定的局限性。...相比图像视频,人体骨架视频可以很好地克服这些不确定因素的影响,所以基于人体骨架的行为识别受到越来越多的关注。...人体骨架序列不仅包含了时序特征,而且还包含了人体的空间结构特征,如何有效地从人体骨架序列中提取具有判别性的空间和时间特征是一个有待解决的问题。...Introduction ---- 近几年基于人体骨架的行为识别已经有很多工作,这些工作在公开数据库上的精度都有很好的提升,但是仍然有一些问题没有解决:1、人的运动是由各个part协调完成的,如行走不仅需要腿的运动

1.1K50

基于人体骨骼点的动作识别

基于骨骼点的动作识别 (Skeleton-based Action Recognition) 旨在从一系列时间连续的人体骨骼点中识别正在执行的动作。...相较于 RGB 帧或光流,人体骨骼这一模态与人体动作天然更密切,且更加紧凑。 因此,人体骨骼模态在各类动作识别任务中有广泛的应用。...基于骨骼点的动作识别的动作识别,往往具有比基于其他模态的算法更轻量,更具泛化性的特点。...MMAction2 中提供了以下大部分数据集由 HRNet 提取的 2D 人体关键点,这种方式提取的人体骨骼质量较高,在各个数据集上都可以取得良好的性能。...数据预处理 OpenPose 是一个标注人体的关节(颈部,肩膀,肘部等),连接成骨骼,进而估计人体姿态的算法。

3.6K30

博客 | Github开源人体姿态识别项目OpenPose中文文档

logo OpenPose人体姿态识别项目是美国卡耐基梅隆大学(CMU)基于卷积神经网络和监督学习并以caffe为框架开发的开源库。可以实现人体动作、面部表情、手指运动等姿态估计。...OpenPose项目Github链接:https://github.com/CMU-Perceptual-Computing-Lab/openpose 为了便于中国开发者学习CMU开源人体姿态识别项目,...Translattor: Tommy in Tongji Univerisity Opensource Software Association 人体姿态识别与估计的应用场景:抖音尬舞机、体育动作教学、...一些人体姿态识别案例案例: 《芳华》文工团跳舞视频片段:人体姿态识别 ? 《芳华》文工团跳舞视频片段:人体姿态识别 《叶问》武打视频片段:人体姿态识别 ?...你知道如何针对本项目优化性能、提升检测速度。 你发现本项目的一个潜在应用场景。 其它问题. 你可以在Github上评论,或者pull request提交你的新代码,我们会尽快回复你的。

10K40
领券