首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

SIGGRAPH | 6个惯性传感器和1个手机实现人体动作捕捉、定位与环境重建

机器之心专栏 机器之心编辑部 近年来,基于惯性的人体动作捕捉技术迅速发展。它们通过在人体上穿戴惯性传感器,实时测量人体的运动信息。然而,这就好比一个人在蒙着眼睛走路——我们可以感受到身体的运动,但随着时间的累积,我们越来越难以确定自己的位置。 本文则试图打开惯性动作捕捉的「眼睛」。通过额外佩戴一个手机相机,我们的算法便有了「视觉」。它可以在捕获人体运动的同时感知环境信息,进而实现对人体的精确定位。该项研究来自清华大学徐枫团队,已被计算机图形学领域国际顶级会议SIGGRAPH2023接收。 论文地址:htt

05

图像超分辨率及相关知识 简介

图像分辨率指图像中存储的信息量,是每英寸图像内有多少个像素点,分辨率的单位为PPI(Pixels Per Inch),通常叫做像素每英寸。一般情况下,图像分辨率越高,图像中包含的细节就越多,信息量也越大。图像分辨率分为空间分辨率和时间分辨率。通常,分辨率被表示成每一个方向上的像素数量,例如64*64的二维图像。但分辨率的高低其实并不等同于像素数量的多少,例如一个通过插值放大了5倍的图像并不表示它包含的细节增加了多少。图像超分辨率重建关注的是恢复图像中丢失的细节,即高频信息。 在大量的电子图像应用领域,人们经常期望得到高分辨率(简称HR)图像。但由于设备、传感器等原因,我们得到的图像往往是低分辨率图像(LR)。 增加空间分辨率最直接的解决方法就是通过传感器制造技术减少像素尺寸(例如增加每单元面积的像素数量);另外一个增加空间分辨率的方法是增加芯片的尺寸,从而增加图像的容量。因为很难提高大容量的偶合转换率,所以这种方法一般不认为是有效的,因此,引出了图像超分辨率技术。

02

RAID技术

RAID 的两个关键目标是提高数据可靠性和 I/O 性能。磁盘阵列中,数据分散在多个磁盘中,然而对于计算机系统来说,就像一个单独的磁盘。通过把相同数据同时写入到多块磁盘(典型地如镜像),或者将计算的校验数据写入阵列中来获得冗余能力,当单块磁盘出现故障时可以保证不会导致数据丢失。有些 RAID 等级允许更多地 磁盘同时发生故障,比如 RAID6 ,可以是两块磁盘同时损坏。在这样的冗余机制下,可以用新磁盘替换故障磁盘, RAID 会自动根据剩余磁盘中的数据和校验数据重建丢失的数据,保证数据一致性和完整性。数据分散保存在 RAID 中的多个不同磁盘上,并发数据读写要大大优于单个磁盘,因此可以获得更高的聚合 I/O 带宽。当然,磁盘阵列会减少全体磁盘的总可用存储空间,牺牲空间换取更高的可靠性和性能。比如, RAID1 存储空间利用率仅有 50% , RAID5 会损失其中一个磁盘的存储容量,空间利用率为 (n-1)/n 。

02
领券