首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

图的定义与术语的详细总结

1.1 图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成。 1.2 通常表示为G(V,E) ,G表示一个图,V是图G中顶点的集合,E是图G中边的集合。 1.3 线性表中把数据元素叫元素,树中将数据元素叫结点,在图中数据元素叫做顶点。 1.4 在线性表中可以没有数据元素,称为空表。 树中可以没有结点,称之为空树。 但是在图中不能没有顶点。这在定义中也有体现:V是顶点的有穷非空集合。 1.5 在线性表中相邻的数据元素之间具有线性关系。 在树的结构中,相邻两层的结点具有层次关系。 在图中,任意两个顶点之间都有可能有关系,顶点之间的逻辑关系用边来表示,边集可以是空集。

05

图的割点、桥和双连通分支的基本概念

回到正题,首先介绍下什么是图的边连通度和点连通度。一般来说,点连通度是指对应一个图G,对于所有点集U属于V(G),也就是V(G)的子集中,使得G-U要么是一个非连通图,要么就是一个平凡图(即仅包含一个独立点的图),其中最小的集合U的大小就是图G的点连通度,有时候也直接称为图的连通度。通俗点说,就是一个图G最少要去掉多少个点会变成非连通图或者平凡图。当然对于一个完全图来说Kn来说,它的连通度就是n-1。 同理,边连通度就是对于一个非平凡图G,至少去掉多少条边才能使得该图变成非连通图。我们的问题就是,对于任意一个图,如何求该图的连通度以及边连通度?这跟最大流问题有什么联系? 简单起见,我们先说如何求一个图的边连通度lamda(G)。(基于无向图考虑) 对于图G,设u,v是图G上的两个顶点,定义r(u,v)为删除最少的边,使得u到v之间没有通路。将图G转换成一个流网络H,u为源点,v是汇点,边容量均为1,那么显然r(u,v)就是流网络的最小割,根据(二)里的介绍,其等于流网络的最大流。 但是,目前为止我们还没解决完问题,因为显然我们要求的边连通度lamda(G)是所有的点对<u,v>对应的r(u,v)中最小的那个值。这样的话我们就必须遍历所有的点对,遍历的的复杂度为O(n*n)。这显然代价太高,而事实上,我们也不必遍历所有点对。

01
领券