首页
学习
活动
专区
圈层
工具
发布

PandasGUI:使用图形用户界面分析 Pandas 数据帧

Pandas 是我们经常使用的一种工具,用于处理数据,还有 seaborn 和 matplotlib用于数据可视化。...相同的命令是: pip install pandasgui 要在 PandasGUI 中读取 文件,我们需要使用show()函数。让我们从将它与 pandas 一起导入开始。...在 Pandas 中,我们可以使用以下命令: titanic[titanic['age'] >= 20] PandasGUI 为我们提供了过滤器,可以在其中编写查询表达式来过滤数据。...上述查询表达式将是: Pandas GUI 中的统计信息 汇总统计数据为您提供了数据分布的概览。在pandas中,我们使用describe()方法来获取数据的统计信息。...PandasGUI 中的数据可视化 数据可视化通常不是 Pandas 的用途,我们使用 matplotlib、seaborn、plotly 等库。

5.9K20

使用基于分层深度学习的分块预测加速VP9帧内编码

with Hierarchical Deep Learning Based Partition Prediction”,主题是使用基于分层深度学习的分块预测加速VP9帧内编码。...因为分块搜索中组合的复杂性,基于分块决策的率失真优化(RDO)是一个较慢的过程,这严重限制了编码器的速度。他们工作的目标就是通过将此RDO过程替换为基于深度学习的分块预测来加速VP9帧内模式。...然后演讲者介绍了他们方法总的流程,如下图,其中包括使用分层全卷积神经网络(H-FCN)的自底向上的块合并预测。 ? 下面演讲者介绍了数据集的制作。...VP9参考编码器被修改成可以提取出编码码流的分块树和QP值,从而可以获得数据集的标签;把原视频降采样到编码分辨率,然后从亮度通道提取无重叠的64x64块作为原始像素值,这些也就是数据集的具体数据;数据集含有帧内...QP为8到105的数据。

82310
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据科学篇| Pandas库的使用

    在数据分析工作中,Pandas 的使用频率是很高的,一方面是因为 Pandas 提供的基础数据结构 DataFrame 与 json 的契合度很高,转换起来就很方便。...数据清洗 数据清洗是数据准备过程中必不可少的环节,Pandas 也为我们提供了数据清洗的工具,在后面数据清洗的章节中会给你做详细的介绍,这里简单介绍下 Pandas 在数据清洗中的使用方法。...df.isnull().any(),结果如下: 姓名 False 语文 False 英语 False 数学 True 使用 apply 函数对数据进行清洗: apply...函数是 Pandas 中自由度非常高的函数,使用频率也非常高。...Pandas 包与 NumPy 工具库配合使用可以发挥巨大的威力,正是有了 Pandas 工具,Python 做数据挖掘才具有优势。

    7.3K20

    数学建模暑期集训13:Pandas实战——处理Excel大数据

    前言 Pandas是python中用于数据分析的一个强大的库。在数学建模中,往往会遇到大数据的题目,数量级通常在六位数以上。...若使用人工处理数据的方法,根本不可能在四天之内处理完,并且电脑内存不够Excel会很卡。 因此,要选大数据的题目,必须要掌握Pandas的一些基本操作。...1.源数据 为了不污染原数据,我建立一个temp的xlsx文件,复制进需要处理的数据,共210948条数据,数据如下: 2.导入数据 运行下面这段程序就能导入.xlsx文件的数据 import pandas...的数据。...7.总结 本篇内容以需求为导向,没有完整的将Pandas功能一一描述,以后遇到类似情况,将案例再看一遍即可快速上手。

    1.1K40

    数据帧的学习整理

    在了解数据帧之前,我们得先知道OSI参考模型 咱们从下往上数,数据帧在第二层数据链路层处理。我们知道,用户发送的数据从应用层开始,从上往下逐层封装,到达数据链路层就被封装成数据帧。...FCS:循环冗余校验字段,用来对数据进行校验,如果校验结果不正确,则将数据丢弃。该字段长4字节。 IEEE802.3帧格式 Length:长度字段,定义Data字段的大小。...其中的Org Code字段设置为0,Type字段即封装上层网络协议,同Ethernet_II帧。 数据帧在网络中传输主要依据其帧头的目的mac地址。...当数据帧封装完成后从本机物理端口发出,同一冲突域中的所有PC机都会收到该帧,PC机在接受到帧后会对该帧做处理,查看目的MAC字段,如果不是自己的地址则对该帧做丢弃处理。...如果目的MAC地址与自己相匹配,则先对FCS进行校验,如果校验结果不正确则丢弃该帧。校验通过后会产看帧中的type字段,根据type字段值将数据传给上层对应的协议处理,并剥离帧头和帧尾(FCS)。

    4.9K20

    pandas的使用

    ---- 提示:以下是本篇文章正文内容,下面案例可供参考 一、pandas是什么? 示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。...二、使用步骤 1.引入库 代码如下(示例): import numpy as np import pandas as pd import matplotlib.pyplot as plt import..._create_unverified_context 2.读入数据 代码如下(示例): data = pd.read_csv( 'https://labfile.oss.aliyuncs.com.../courses/1283/adult.data.csv') print(data.head()) 该处使用的url网络请求的数据。...---- 总结 提示:这里对文章进行总结: 例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

    47410

    CAN通信的数据帧和远程帧「建议收藏」

    (3)远程帧发送特定的CAN ID,然后对应的ID的CAN节点收到远程帧之后,自动返回一个数据帧。...A可以用B节点的ID,发送一个Remote frame(远程帧),B收到A ID 的 Remote Frame 之后就发送数据给A!发送的数据就是数据帧!...为了总线访问安全,每个发送器必须用独属于自己的ID号往外发送帧(多个接收器的过滤器ID可以重复),(可以让某种信号帧只使用特定的ID号,而每个设备都是某一种信号的检测源,这样就形成某一特定个设备都只是用特定的...2)使用远程帧来做信息请求:由于A直接发送B_ID号的数据帧,可能造成总线冲突,但若是A发送远程帧:远程帧的ID号自然是B发送帧使用的ID号(B_ID )。...当B(前提是以对过滤器设置接受B_ID类型的帧)接受到远程帧后,在软件(注意,是在软件的控制下,而不是硬件自动回应远程帧)控制下,往CAN总线上发送一温度信息帧,即使用B_ID作帧ID号往CAN总线上发送温度信息帧

    9.2K30

    数据科学篇| Pandas库的使用(二)

    在数据分析工作中,Pandas 的使用频率是很高的,一方面是因为 Pandas 提供的基础数据结构 DataFrame 与 json 的契合度很高,转换起来就很方便。...数据清洗 数据清洗是数据准备过程中必不可少的环节,Pandas 也为我们提供了数据清洗的工具,在后面数据清洗的章节中会给你做详细的介绍,这里简单介绍下 Pandas 在数据清洗中的使用方法。...df.isnull().any(),结果如下: 姓名 False 语文 False 英语 False 数学 True 使用 apply 函数对数据进行清洗: apply...函数是 Pandas 中自由度非常高的函数,使用频率也非常高。...Pandas 包与 NumPy 工具库配合使用可以发挥巨大的威力,正是有了 Pandas 工具,Python 做数据挖掘才具有优势。

    6.4K20

    数据科学篇| Pandas库的使用(二)

    在数据分析工作中,Pandas 的使用频率是很高的,一方面是因为 Pandas 提供的基础数据结构 DataFrame 与 json 的契合度很高,转换起来就很方便。...,我们就从数据处理的流程角度,来看下他们的使用方法。...数据清洗 数据清洗是数据准备过程中必不可少的环节,Pandas 也为我们提供了数据清洗的工具,在后面数据清洗的章节中会给你做详细的介绍,这里简单介绍下 Pandas 在数据清洗中的使用方法。...df.isnull().any(),结果如下: 1姓名 False 2语文 False 3英语 False 4数学 True 使用 apply 函数对数据进行清洗:...Pandas 包与 NumPy 工具库配合使用可以发挥巨大的威力,正是有了 Pandas 工具,Python 做数据挖掘才具有优势。 最后,祝有所学习,有所成长

    4.8K30

    ​Pandas库的基础使用系列---数据读取

    前言欢迎各位小伙伴一起继续学习,我们上期和大家简单的介绍了一下JupyterLab的使用,从今天开始我们就要正式开始pandas的学习了。...为了和大家能使用同样的数据进行学习,建议大家可以从国家统计局的网站上进行下载。...网站:国家数据 (stats.gov.cn)如何加载数据当我们有了数据后,如何读取它里面的内容呢我们在根目录下创建一个data的文件夹,用来保存我们的数据,本次演示使用的数据集是行政区划我们可以点击右上角的下载图标进行下载为了演示...我们新建一个day01的目录用来保存我们的notebook选择默认的即可我们为了能使用pandas,我们需要通过pip 进行安装,在notebook中安装,还是比较方便的,只需输入以下内容!...导入pandasimport pandas as pd运行结束后,单元格的前面会出现一个编号,你的和我的不一样也没关系。加载数据df = pd.read_csv("..

    49410

    pandas | 使用pandas进行数据处理——Series篇

    它可以很方便地从一个csv或者是excel表格当中构建出完整的数据,并支持许多表级别的批量数据计算接口。 安装使用 和几乎所有的Python包一样,pandas也可以通过pip进行安装。...pip install pandas 和Numpy一样,我们在使用pandas的时候通常也会给它起一个别名,pandas的别名是pd。...一般和pandas经常一起使用的还有另外两个包,其中一个也是科学计算包叫做Scipy,另外一个是对数据进行可视化作图的工具包,叫做Matplotlib。...也可以使用Numpy当中的运算函数来进行一些复杂的数学运算,但是这样计算得到的结果会是一个Numpy的array。 ?...pandas是Python数据处理的一大利器,作为一个合格的算法工程师几乎是必会的内容,也是我们使用Python进行机器学习以及深度学习的基础。

    1.7K20

    pandas | 使用pandas进行数据处理——DataFrame篇

    今天是pandas数据处理专题的第二篇文章,我们一起来聊聊pandas当中最重要的数据结构——DataFrame。...对于excel、csv、json等这种结构化的数据,pandas提供了专门的api,我们找到对应的api进行使用即可: ?...因为我们做机器学习或者是参加kaggle当中的一些比赛的时候,往往数据都是现成的,以文件的形式给我们使用,需要我们自己创建数据的情况很少。...常用操作 下面介绍一些pandas的常用操作,这些操作是我在没有系统学习pandas的使用方法之前就已经了解的。了解的原因也很简单,因为它们太常用了,可以说是必知必会的常识性内容。...转成numpy数组 有时候我们使用pandas不方便,想要获取它对应的原始数据,可以直接使用.values获取DataFrame对应的numpy数组: ?

    4.1K10

    数据仓库的分层和作用特点_数据仓库的架构以及数据分层

    文章目录 一、前言 二、数仓建模 三、数仓分层 四、数仓的基本特征 五、数据仓库用途 六、数仓分层的好处 七、如何分层 一、前言 现在说数仓,更多的会和数据平台或者基础架构搭上,已经融合到整个基础设施的搭建上...数仓的建模或者分层,其实都是为了更好的去组织、管理、维护数据,实际开发时会整合2种方式去使用,当然,还有些其他的,像Data Vault模型、Anchor模型,暂时还没有应用过,就不说了。...,《大数据之路》,里面有很多数仓相关的内容,很不错,参考后,目前使用的分层模式如下: 按照这种分层方式,我们的开发重心就在 DWD 层,就是明细数据层,这里主要是一些宽表,存储的还是明细数据;到了 DWS...:每一个数据分层都有它的作用域,这样我们在使用表的时候能更方便地定位和理解。...在这里,主要是提供给数据产品和数据分析使用的数据,一般会存放在 ES、MySQL等系统中供线上系统使用,也可能会存在 Hive 或者 Druid 中供数据分析和数据挖掘使用。

    3.1K32

    使用Pandas处理杂乱数据

    现在我有一份非常乱的数据,随便从里面读出一列就可以看出来有多乱了,在处理这份数据时,能复习到Pandas中一些平时不太用的功能。...接下来我们将对这些数据一一进行处理: 1. 转换字符类型 可以在读取数据时就将这一列数据的类型统一转换为字符串,方便进行批量处理,并同时对nan数据进行统一表达。...带横杠的数据 因为其他编码都是五位数,只需将编码全部进行截断,只保留前五位,就可以把多余的代码去除了。...,接下来可以利用编码对数据进行筛选查看了,数据中编码以0和1开头的最多,可以先查看一下以其他数字开头的数据有哪些。...非0/1开头的数据 还可以通过计数的方式查看数据分布 data['City'].str.upper().value_counts() BROOKLYN 31662 NEW YORK

    81541

    Pandas的数据结构Pandas的数据结构

    Pandas的数据结构 import pandas as pd Pandas有两个最主要也是最重要的数据结构: Series 和 DataFrame Series Series是一种类似于一维数组的...对象,由一组数据(各种NumPy数据类型)以及一组与之对应的索引(数据标签)组成。...类似一维数组的对象 由数据和索引组成 索引(index)在左,数据(values)在右 索引是自动创建的 [图片上传失败...(image-3ff688-1523173952026)] 1....DataFrame既有行索引也有列索引,它可以被看做是由Series组成的字典(共用同一个索引),数据是以二维结构存放的。...类似多维数组/表格数据 (如,excel, R中的data.frame) 每列数据可以是不同的类型 索引包括列索引和行索引 [图片上传失败...

    1.2K20

    使用Pandas进行数据清理的入门示例

    数据清理是数据分析过程中的关键步骤,它涉及识别缺失值、重复行、异常值和不正确的数据类型。获得干净可靠的数据对于准确的分析和建模非常重要。...本文将介绍以下6个经常使用的数据清理操作: 检查缺失值、检查重复行、处理离群值、检查所有列的数据类型、删除不必要的列、数据不一致处理 第一步,让我们导入库和数据集。...(高于400的值) 检查列的数据类型 info()可以查看数据集中列的数据类型。...Pandas提供字符串方法来处理不一致的数据。 str.lower() & str.upper()这两个函数用于将字符串中的所有字符转换为小写或大写。...使用pandas功能,数据科学家和数据分析师可以简化数据清理工作流程,并确保数据集的质量和完整性。 作者:Python Fundamentals

    73660
    领券