首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用树函数时出现“NAs由强制引入”错误

在使用树函数(如决策树、随机森林等)时,出现“NAs由强制引入”错误通常是由于数据集中存在缺失值(NA,Not Available)导致的。这个错误提示表明在构建树模型的过程中,某些变量或观测值因为缺失值而被强制引入,从而影响了模型的构建和性能。

基础概念

树函数是一种基于树形结构的机器学习算法,常用于分类和回归问题。决策树通过递归地将数据集分割成子集,每个子集对应一个分支,直到满足停止条件为止。

原因分析

  1. 数据缺失:数据集中某些变量存在缺失值,导致在构建树时无法进行有效的分割。
  2. 强制引入:为了避免数据丢失,某些算法会强制引入包含缺失值的观测值,但这可能会影响模型的准确性和稳定性。

解决方法

  1. 处理缺失值
    • 删除缺失值:如果缺失值较少,可以直接删除包含缺失值的行或列。
    • 删除缺失值:如果缺失值较少,可以直接删除包含缺失值的行或列。
    • 填充缺失值:可以使用均值、中位数、众数等统计量填充缺失值,或者使用插值方法。
    • 填充缺失值:可以使用均值、中位数、众数等统计量填充缺失值,或者使用插值方法。
  • 使用支持缺失值的算法
    • 某些树算法(如CART、rpart)支持处理缺失值,可以尝试使用这些算法。
    • 某些树算法(如CART、rpart)支持处理缺失值,可以尝试使用这些算法。
  • 使用专门的包处理缺失值
    • 可以使用mice包进行多重插补,或者使用Amelia包进行缺失值分析。
    • 可以使用mice包进行多重插补,或者使用Amelia包进行缺失值分析。

应用场景

树函数广泛应用于各种领域,如金融风险评估、医疗诊断、客户流失预测等。通过处理缺失值,可以提高模型的准确性和稳定性,从而更好地应用于实际问题。

参考链接

通过以上方法,可以有效解决在使用树函数时出现的“NAs由强制引入”错误,提高模型的性能和准确性。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

麻省理工 HAN Lab 提出 ProxylessNAS 自动为目标任务和硬件定制高效 CNN 结构

摘要:NAS 受限于其过高的计算资源 (GPU 时间, GPU 内存) 需求,仍然无法在大规模任务 (例如 ImageNet) 上直接进行神经网络结构学习。目前一个普遍的做法是在一个小型的 Proxy 任务上进行网络结构的学习,然后再迁移到目标任务上。这样的 Proxy 包括: (i) 训练极少量轮数; (ii) 在较小的网络下学习一个结构单元 (block),然后通过重复堆叠同样的 block 构建一个大的网络; (iii) 在小数据集 (例如 CIFAR) 上进行搜索。然而,这些在 Proxy 上优化的网络结构在目标任务上并不是最优的。在本文中,我们提出了 ProxylessNAS,第一个在没有任何 Proxy 的情况下直接在 ImageNet 量级的大规模数据集上搜索大设计空间的的 NAS 算法,并首次专门为硬件定制 CNN 架构。我们将模型压缩 (减枝,量化) 的思想与 NAS 进行结合,把 NAS 的计算成本 (GPU 时间, GPU 内存) 降低到与常规训练相同规模,同时保留了丰富的搜索空间,并将神经网络结构的硬件性能 (延时,能耗) 也直接纳入到优化目标中。我们在 CIFAR-10 和 ImageNet 的实验验证了」直接搜索」和「为硬件定制」的有效性。在 CIFAR-10 上,我们的模型仅用 5.7M 参数就达到了 2.08% 的测试误差。对比之前的最优模型 AmoebaNet-B,ProxylessNAS 仅用了六分之一的参数量就达到了更好的结果。在 ImageNet 上,ProxylessNAS 比 MobilenetV2 高了 3.1% 的 Top-1 正确率,并且在 GPU 上比 MobilenetV2 快了 20%。在同等的 top-1 准确率下 (74.5% 以上), ProxylessNAS 的手机实测速度是当今业界标准 MobileNetV2 的 1.8 倍。在用 ProxylessNAS 来为不同硬件定制神经网络结构的同时,我们发现各个平台上搜索到的神经网络在结构上有很大不同。这些发现为之后设计高效 CNN 结构提供新的思路。

05
  • CVPR 2021 | AttentiveNAS:通过注意力采样改善神经架构搜索

    神经结构搜索(NAS)在设计最先进的(SOTA)模型方面表现出了巨大的潜力,既准确又快速。近年来,BigNAS 等两阶段 NAS 将模型训练和搜索过程解耦,取得了良好的搜索效率。两阶段 NA S在训练过程中需要对搜索空间进行采样,这直接影响最终搜索模型的准确性。尽管均匀抽样的广泛应用是为了简化,但它不考虑模型性能的帕累托前沿,而帕累托前沿是搜索过程中的主要关注点,因此错过了进一步提高模型精度的机会。在这项工作中,我们建议关注于采样网络,以提高性能的帕累托。在训练过程中,本文还提出了有效识别帕累托网络的算法。无需额外的再训练或后处理,就可以通过广泛的 FLOPs 同时获得大量的网络。本文发现的模型家族 AttentiveNAS 模型在 ImageNet 上的准确率最高,从77.3%到80.7%,优于包括 BigNAS、Once-for-All networks 和 FBNetV3 在内的 SOTA 模型。并且本文还实现了 ImageNet 的精度为80.1%,只需491 MFLOPs。

    02

    干货 | 一文详解神经网络结构搜索(NAS)

    AI 科技评论按:近年来,深度学习的繁荣,尤其是神经网络的发展,颠覆了传统机器学习特征工程的时代,将人工智能的浪潮推到了历史最高点。然而,尽管各种神经网络模型层出不穷,但往往模型性能越高,对超参数的要求也越来越严格,稍有不同就无法复现论文的结果。而网络结构作为一种特殊的超参数,在深度学习整个环节中扮演着举足轻重的角色。在图像分类任务上大放异彩的ResNet、在机器翻译任务上称霸的Transformer等网络结构无一不来自专家的精心设计。这些精细的网络结构的背后是深刻的理论研究和大量广泛的实验,这无疑给人们带来了新的挑战。

    03

    专栏 | 蒙特卡洛树搜索在黑盒优化和神经网络结构搜索中的应用

    现实世界的大多数系统是没有办法给出一个确切的函数定义,比如机器学习模型中的调参,大规模数据中心的冷藏策略等问题。这类问题统统被定义为黑盒优化。黑盒优化是在没办法求解梯度的情况下,通过观察输入和输出,去猜测优化变量的最优解。在过去的几十年发展中,遗传算法和贝叶斯优化一直是黑盒优化最热门的方法。不同于主流算法,本文介绍一个基于蒙特卡洛树搜索(MCTS)的全新黑盒优化算法,隐动作集蒙特卡洛树搜索 (LA-MCTS)。LA-MCTS 发表在 2020 年的 NeurIPS,仅仅在文章公开几个月后,就被来自俄罗斯 JetBrains 和韩国的 KAIST 的队伍独立复现,并用来参加 2020 年 NeurIPS 的黑盒优化挑战,分别取得了第三名和第八名的好成绩 [10][11]。

    01

    首次基于神经架构搜索自动生成图卷积结构,刷新人体动作识别准确率 | AAAI 2020

    AI 前线导读: 由图卷积网络(GCN)推动的基于骨骼数据的人体动作识别由于其非欧氏结构数据具有强大的建模能力而备受关注。然而,许多现有的 GCN 方法都提供了预定义的图结构,这可能会丢失隐式的联合相关性。因此,探索更好的 GCN 架构则成为了亟需解决的问题。为了解决这些问题,本文的作者使用了神经结构搜索(NAS)的思路,提出了第一个可自动化设计的 GCN,该模型可用于基于骨骼数据的行为识别。在充分研究节点之间的时空相关性之后,作者通过提供多个动态图模块来丰富搜索空间。此外,作者引入了多跳模块,希望突破一阶逼近对表示能力的限制。相关论文已被 AAAI 2020 接收。本文是 AI 前线第 100 篇论文导读,我们将详细介绍这一搜索方法。

    02

    万字解读商汤科技ICLR2019论文:随机神经网络结构搜索

    本文作者对NAS任务中强化学习的效率进行了深入思考,从理论上给出了NAS中强化学习收敛慢的原因。该论文提出了一种全新的经济、高效且自动化程度高的神经网络结构搜索(NAS)方法。他们通过深入分析NAS任务的MDP,提出了一个更高效的方法——随机神经网络结构搜索,重新建模了NAS问题。与基于强化学习的方法(ENAS)相比,SNAS的搜索优化可微分,搜索效率更高。与其他可微分的方法(DARTS)相比,SNAS直接优化NAS任务的目标函数,搜索结果偏差更小。此外,基于SNAS保持了随机性(stochasticity)的优势,该论文进一步提出同时优化网络损失函数的期望和网络正向时延的期望,自动生成硬件友好的稀疏网络。

    05
    领券