首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

分类模型的评估指标 | 混淆矩阵(2)

评估指标 01 总体分类精度 指针对每一个随机样本,所分类的结果与检验数据类型相一致的概率,也就是被正确分类的像元总和除以总像元数。放到混淆矩阵中就是对角线上的像元数总和除以总像元数目。...放到混淆矩阵中,就是分类器将整幅影像正确分类为A的像元数(对角线上A类的值)与真实情况下A的像元数(真实情况A的像元数总和)之比。...放到混淆矩阵中,是分类器将整幅影像正确分类为A的像元数和(对角线上A类的值)与分类器分出的所有A类像元数(预测值为A的像元数总和)之比。...04 错分误差 指对于分类结果中的某种类型,与参考图像类型不一致的概率。放到混淆矩阵中,就是被分类器分为A类的像元中,分类出错的像元数所占的比率。...3 ---计算方法 其中,Po是总体分类精度; Pe是每一类的真实样本像元数与每一类的预测样本像元数之积再对所有类别的计算结果求和,再与总像元数的平方之比. 07 小例子 这次我们还是使用上一期的混淆矩阵

2.9K30

混淆矩阵及其可视化

混淆矩阵(Confusion Matrix)是机器学习中用来总结分类模型预测结果的一个分析表,是模式识别领域中的一种常用的表达形式。...它以矩阵的形式描绘样本数据的真实属性和分类预测结果类型之间的关系,是用来评价分类器性能的一种常用方法。 我们可以通过一个简单的例子来直观理解混淆矩阵。...cat", "cat", "ant", "cat"] #预测 y_true=["cat", "ant", "cat", "cat", "ant", "bird"] #真实 下图便是上面给出数据的混淆矩阵...混淆矩阵的每一行数据之和代表该类别的真实的数目,每一列之和代表该类别的预测的数目,矩阵的对角线上的数值代表被正确预测的样本数目。 那么这个混淆矩阵是如何绘制的呢?...这里给出两种简单的方法,一是使用seaborn的热力图来绘制,可以直接将混淆矩阵可视化; C=confusion_matrix(y_true, y_pred, labels=["ant", "bird"

2.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    分类模型的评估指标 | 混淆矩阵(1)

    而不是像小编大一时,面对这些专业性极强的东西两眼一抹黑,学习的很吃力;此外,基础是延伸和扩展的前提,基础的东西如果掌握的不牢靠,那么在前沿事物的钻研过程中也不会取得更大的建树。...分类模型的评估指标有很多,今天小编给大家准备的是混淆矩阵。 简介 首先我们来解释一下什么是分类模型的评估指标。...其有两种表现形式:定量指标和图表指标;定量指标即以具体数值来表示分类质量;图表指标即以图表的形式来表示分类质量,以达到增强可视化评估的效果。 我们今天介绍的混淆矩阵就是一个图表形式的指标。...由以上内容可以获得结论:对于一款分类模型,TP值与TN值的数量越多,FP值与FN值的数量越少,模型的分类精度就越高。 02 样本二级指标 混淆矩阵统计的是样本在各个一级指标的数量。...特异度:TN/(TN+FP)=53/(53+20)≈73% 3 ---三级指标 F1 Score=2PR/(P+R)=(2*0.5*0.74)/(0.5+0.74) ≈0.6 以上就是在机器学习领域中的混淆矩阵及它所引申出的几个评估指标

    83850

    CNN中的混淆矩阵 | PyTorch系列(二十三)

    然后,我们会看到如何使用这个预测张量,以及每个样本的标签,来创建一个混淆矩阵。这个混淆矩阵将允许我们查看我们的网络中哪些类别相互混淆。...混淆矩阵要求 要为整个数据集创建一个混淆矩阵,我们需要一个与训练集长度相同的一维预测张量。...> len(train_set) 60000 这个预测张量将包含我们训练集中每个样本的10个预测(每个服装类别一个)。在我们得到这个张量之后,我们可以使用标签张量来生成一个混淆矩阵。...建立混淆矩阵 我们构建混淆矩阵的任务是将预测值的数量与真实值(目标)进行比较。 这将创建一个充当热图的矩阵,告诉我们预测值相对于真实值的下降位置。...绘制混淆矩阵 为了将实际的混淆矩阵生成为numpy.ndarray,我们使用sklearn.metrics库中的confusion_matrix()函数。让我们将其与其他需要的导入一起导入。

    5.4K20

    python—结巴分词的原理理解,Hmm中的转移概率矩阵和混淆矩阵。

    结巴分词的过程: jieba分词的python 代码 结巴分词的准备工作 开发者首先根据大量的人民日报训练了得到了字典库、和Hmm中的转移概率矩阵和混淆矩阵。 1....但是现在就不会了,只要把“中国人民”和“中国人民银行”之间的节点搜索一遍就行了,大大的节省了时间。有句话叫以空间换时间,最适合用来表达这个意思。 2....给定待分词的句子, 使用正则获取连续的 中文字符和英文字符, 切分成 短语列表, 对每个短语使用DAG(查字典)和动态规划, 得到最大概率路径, 对DAG中那些没有在字典中查到的字, 组合成一个新的片段短语..., 使用HMM模型进行分词, 也就是作者说的识别新词, 即识别字典外的新词....这里采用动态规划的最优化搜索。

    1.6K50

    用混淆矩阵计算kappa系数「建议收藏」

    从一篇论文——融合注意力机制和高效网络的糖尿病视网膜病变识别与分类,看到人家除了特异性、敏感性、准确率、混淆矩阵以外,还用了加权kappa系数,所以了解一下kapp系数的知识,加权kappa还没找到更好的资料...资料来源于百度百科词条——kappa系数 Kappa系数用于一致性检验,也可以用于衡量分类精度,但kappa系数的计算是基于混淆矩阵的. kappa系数是一种衡量分类精度的指标。...计算公式 示例(这里的混淆矩阵用百度词条里的,但是好像我常用的是实际是下标,预测类别是上标,注意一下) 为了计算方便看懂,我重画了一下 结果分析 kappa计算结果为-1-1,但通常...,bC %在百度词条里的图中,真实样本数就是按列求值,预测出来的样本就是按行求值 %这里按照kappa系数百度词条里的图来计算,但是我一般用的混淆矩阵图是反过来的。。。这里不管了。。。...是按行求值,把同一行的数加起来,这是列向量 % 我常用的混淆矩阵是这样计算的,虽然结果没有改变。。。

    2.6K10

    python—结巴分词的原理理解,Hmm中的转移概率矩阵和混淆矩阵。

    结巴分词的过程: jieba分词的python 代码 结巴分词的准备工作 开发者首先根据大量的人民日报训练了得到了字典库、和Hmm中的转移概率矩阵和混淆矩阵。 1....但是现在就不会了,只要把“中国人民”和“中国人民银行”之间的节点搜索一遍就行了,大大的节省了时间。有句话叫以空间换时间,最适合用来表达这个意思。 2....给定待分词的句子, 使用正则获取连续的 中文字符和英文字符, 切分成 短语列表, 对每个短语使用DAG(查字典)和动态规划, 得到最大概率路径, 对DAG中那些没有在字典中查到的字, 组合成一个新的片段短语..., 使用HMM模型进行分词, 也就是作者说的识别新词, 即识别字典外的新词....这里采用动态规划的最优化搜索。

    1.4K20

    分类评估方法-召回率、ROC与混淆矩阵

    精确率与召回率 ---- 精确率(Precision)与召回率(Recall)是分类任务中的常用指标,首先需要知道混淆矩阵。...,FN) 假正例(False Positive,FP) 真反例(True Negative,TN) 显然,四者之和等于样例总数,混淆矩阵如下: 精确率 P 是所有预测类别为1的样本中,真实类别为1...推广到多分类任务中,由于混淆矩阵是对应正反两个类别的,而多分类中类别大于2。使用组合,将组合中每两个类别生成一个对应矩阵,并计算F1,最后再计算所有F1的平均值,得到宏F1(macro-F1)。...from sklearn.metrics import roc_auc_score print(roc_auc_score(y_test, y_pred)) 混淆矩阵 ---- 将上述二分类中的混淆矩阵应用到多分类任务中...,即将正例反例两类扩展到类1类2···类n中,反映预测标签与真实标签的情况,计算各类预测结果中的百分比情况,使用颜色作为区分,颜色越深对于百分比越大,表示属于该类的概率越大。

    1.7K30

    多分类任务的混淆矩阵

    来源: DeepHub IMBA本文约1000字,建议阅读5分钟本文讨论了如何在多分类中使用混淆矩阵评估模型的性能。 什么是混淆矩阵? 它显示了实际值和预测值之间的差异。...对于多分类来说,它是一个 N * N 矩阵,其中 n 是编号。输出列中的类别,也称为目标属性。一二分类任务中包含了 2 个类也就是一个 2*2 矩阵,一般情况下介绍混淆矩阵都会以二分类为例。...那么将得到一个 3*3 矩阵依此类推。通过上面描述我们知道,混淆矩阵的类将具有相同数量的行和列。...我们将使用一个 3 x 3 矩阵,我们将使用我将向您展示的技巧计算 TP、TN、FP、FN 值。这个技巧也可以应用于 4*4、5*5…N*N 矩阵。...考虑这个混淆矩阵在下图 1 中的数据集的输出列中具有 A、B、C 类。

    78240

    模型评估之混淆矩阵

    混淆矩阵是机器学习中总结分类模型预测结果的情形分析表,以矩阵形式将数据集中的记录按照真实的类别与分类模型预测的类别判断两个标准进行汇总。...其中矩阵的行表示真实值,矩阵的列表示预测值,下面我们先以二分类为例,看下矩阵表现形式,如下: 二分类混淆矩阵 现在我们举个列子,并画出混淆矩阵表,假如宠物店有10只动物,其中6只狗,4只猫,现在有一个分类器将这...10只动物进行分类,分类结果为5只狗,5只猫,那么我们画出分类结果混淆矩阵,并进行分析,如下(我们把狗作为正类): 猫狗分类混淆矩阵 通过混淆矩阵我们可以轻松算的真实值狗的数量(行数量相加)为6=5+...刚才分析的是二分类问题,那么对于多分类问题,混淆矩阵表示的含义也基本相同,这里我们以三类问题为例,看看如何根据混淆矩阵计算各指标值。...至此,关于模型评估个各指标已全部介绍完毕,后面的文章我们将开始讲解一些经典算法的推导及使用,喜欢的小伙伴请点击关注!

    1.5K10

    混淆矩阵

    混淆矩阵是一个表,经常用来描述分类模型(或“分类器”)在已知真实值的一组测试数据上的性能。混淆矩阵本身比较容易理解,但是相关术语可能会令人混淆。...让我们从一个二进制分类器的混淆矩阵示例开始(尽管它可以很容易地扩展到两个以上的类): ? 我们能从这个矩阵中了解到什么? 有两种可能的预测类:“yes”和“no”。...我已经将这些项添加到混淆矩阵中,并且添加了行和列总数: ? 这是一个比率的列表,通常是从一个混淆矩阵的二元分类器里得出: 准确率(Accuracy):总的来说,分类器的准确率是多少?...然而,对于一个特定的应用程序,最好的分类器有时会有比零错误率更高的错误率,正如 “Accuracy Paradox(精确度悖论)”所证明的那样。...Cohen's Kappa: 这本质上是对分类器的性能的一种度量,与它仅仅是偶然的性能进行比较。换句话说,如果模型的准确率和零错误率之间有很大的差异,那么模型的Kappa分数就会很高。

    1.4K20

    混淆矩阵及confusion_matrix函数的使用

    1.混淆矩阵 混淆矩阵是机器学习中总结分类模型预测结果的情形分析表,以矩阵形式将数据集中的记录按照真实的类别与分类模型作出的分类判断两个标准进行汇总。...这个名字来源于它可以非常容易的表明多个类别是否有混淆(也就是一个class被预测成另一个class) 下图是混淆矩阵的一个例子 ?...其中灰色部分是真实分类和预测分类结果相一致的,绿色部分是真实分类和预测分类不一致的,即分类错误的。...2.confusion_matrix函数的使用 官方文档中给出的用法是 sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None, sample_weight...=None) y_true: 是样本真实分类结果,y_pred: 是样本预测分类结果 labels:是所给出的类别,通过这个可对类别进行选择 sample_weight : 样本权重 实现例子:

    2.2K20

    ROC曲线AUC曲线与混淆矩阵介绍

    ROC曲线的横坐标为false positive rate(FPR),纵坐标为true positive rate(TPR) 混淆矩阵 接下来这张图是混淆矩阵。...先理解 一下 • 伪阳性率(FPR) 判定为正例却不是真正例的概率 • 真阳性率(TPR) 判定为正例也是真正例的概率 • 伪阴性率(FNR) 判定为负例却不是真负例的概率 • 真阴性率(...结论:ROC曲线越接近左上角,该分类器的性能越好。 AUC曲线 AUC(Area Under Curve)被定义为ROC曲线下的面积,这个面积的数值不会大于1。...又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。...使用AUC值作为评价标准是因为很多时候ROC曲线并不能清晰的说明哪个分类器的效果更好,而作为一个数值,对应AUC更大的分类器效果更好。

    1.6K20

    混淆矩阵(Confusion Matrix)

    一句话解释版本:混淆矩阵就是分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来。这个表就是混淆矩阵。数据分析与挖掘体系位置混淆矩阵是评判模型结果的指标,属于模型评估的一部分。...在分类型模型评判的指标中,常见的方法有如下三种:混淆矩阵(也称误差矩阵,Confusion Matrix)ROC曲线AUC面积本篇主要介绍第一种方法,即混淆矩阵,也称误差矩阵。...混淆矩阵的定义混淆矩阵的定义混淆矩阵(Confusion Matrix),它的本质远没有它的名字听上去那么拉风。矩阵,可以理解为就是一张表格,混淆矩阵其实就是一张表格而已。...混淆矩阵的指标预测性分类模型,肯定是希望越准越好。那么,对应到混淆矩阵中,那肯定是希望TP与TN的数量大,而FP与FN的数量小。...F1-Score的取值范围从0到1的,1代表模型的输出最好,0代表模型的输出结果最差。混淆矩阵的实例当分类问题是二分问题是,混淆矩阵可以用上面的方法计算。当分类的结果多于两种的时候,混淆矩阵同时适用。

    11.2K10

    模型效果评价—混淆矩阵

    本文目录 什么是混淆矩阵 混淆矩阵有关的三级指标 2.1 一级指标 2.2 二级指标 2.3 三级指标 计算混淆矩阵的实例 用Python计算混淆矩阵并图形展示 4.1 加载包 4.2 加载数据 4.3...定义绘制混淆矩阵的函数 4.4 绘制单个混淆矩阵 4.5 设定不同的阈值一次绘制多个混淆矩阵 一、什么是混淆矩阵 ?...混淆矩阵是用于评价分类模型效果的NxN矩阵,其中N是目标类别的数目。矩阵将实际类别和模型预测类别进行比较,评价模型的预测效果。...但是,混淆矩阵里统计的是数量,在数据量很大的情况下很难一眼判断出模型的优劣。因此,在混淆矩阵的基本统计结果上又衍生了如下4个指标(可以理解为二级指标,类似于特征工程里的衍生变量): ?...F1-Score的取值范围(0~1),越接近1说明模型预测效果越好。 三、计算混淆矩阵的实例 ?

    2K10

    混淆矩阵简介与Python实现

    什么是混淆矩阵 混淆矩阵是机器学习中总结分类模型预测结果的情形分析表,以矩阵形式将数据集中的记录按照真实的类别与分类模型作出的分类判断两个标准进行汇总。...这个名字来源于它可以非常容易的表明多个类别是否有混淆(也就是一个class被预测成另一个class) 如下图: ? 其中绿色部分是预测正确的,红色是预测错误的。...Python混淆矩阵的使用 confusion_matrix函数的使用 官方文档中给出的用法是 sklearn.metrics.confusion_matrix(y_true, y_pred, labels...=None, sample_weight=None) y_true: 是样本真实分类结果,y_pred: 是样本预测分类结果 labels:是所给出的类别,通过这个可对类别进行选择 sample_weight

    1.9K30

    模型评价之混淆矩阵、ROC曲线与AUC

    本节课就给大家详细讲解分类模型中常用的模型评价方法--混淆矩阵、ROC曲线与AUC。                      ...混淆矩阵 我们以常见的二分类问题为例,假设模型预测为正例记为1(positive),反例记为0(negative),那么我们可以根据实际情况与模型预测情况得到以下一张表格,它就是我们常说的混!淆!...那么,对应到混淆矩阵中,就是希望TP与TN对应位置的数值越大越好,而FP与FN对应位置的数值越小越好。...+ R) (P代表精确率,R代表召回率) 注:1、以上几个指标范围在0-1之间,数值越大表示相应结果越好; 2、精确率是针对预测结果而言的,召回率是针对实际结果而言的; 3、混淆矩阵也可以用作多分类问题...若曲线上下两部分面积相等,则它就是y=x直线,此时AUC等于0.5,表示模型的结果相当于随机猜测,没什么效果~ ? ok,到这里混淆矩阵、ROC曲线与AUC你都懂了吗?不懂就慢慢消化吧。

    1.6K20
    领券