首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用Python建立你数据科学的“肌肉记忆”

    现在,你可以想象一下,当你编写代码时,Python语法和函数会根据你的分析思路从指尖飞出。那画面是不是特别棒?这篇文章会帮助你实现这个目标。 我建议每天早上练习这个脚本10分钟,并重复一个星期。...如果想更加具体地了解数据,请使用select_dtypes()来列入或排除数据类型。问:如果我只想看2018的数据,该怎么做?...isnull.sum() 选择在一列中不为空的数据,例如,“Metro”不为空。...3.3 用空值对划分子集 选择我们希望拥有至少50个非NA值的行,但不限列: # Drop the rows where at least one columns is NAs. # Method 1:...所以我们只使用列来演示drop_duplicated的语法。

    2.9K20

    精品教学案例 | 金融贷款数据的清洗

    案例中使用Pandas、Seaborn和Matplotlib等工具对数据进行清洗和可视化操作,提高学生对工具的使用熟练程度。 1.数据读取 本案例主要背景为贷款情况审查。...Numpy的数组存储,那么返回的就是含有布尔值的数组,如果使用的是Pandas的DataFrame存储,那么返回的就是含有布尔值的DataFrame。...emp_title列的意思是借款人在申请贷款时提供的职务,此处为空的情况下不能简单的进行填补,因为有可能空值代表该人无职业或者职业不明确,也没有好的办法对这些缺失值的职业进行判断,此处使用哑变量的思路进行填补...2.4 向前向后与插值法进行缺失值的填补 进行前向与后向填补时,也是使用上文介绍的fillna()函数,对该函数中的method参数进行设置,设置为bfill即为后值向前填补,设置为pad即为前值向后填补...使用Pandas中的to_csv()函数可以进行csv文件的输出,因为不需要写入索引信息,所以此处对index参数设置为False。 dataset_copy.to_csv(".

    4.7K21

    Pandas必会的方法汇总,建议收藏!

    (过滤行)、切片(行切片)、或布尔型DataFrame(根据条件设置值) 2 df.loc[val] 通过标签,选取DataFrame的单个行或一组行 3 df.loc[:,val] 通过标签,选取单列或列子集...] 通过行和列的位置(整数),选取单一的标量 10 reindex 通过标签选取行或列 11 get_value 通过行和列标签选取单一值 12 set_value 通过行和列标签选取单一值 举例:使用...22 .unique() 返回一个Series中的唯一值组成的数组。...默认会返回一个新的对象,传入inplace=True可以对现有对象进行就地修改。 2 .duplicated() 判断各行是否是重复行,返回一个布尔型Series。...如果你已经清楚了Pandas的这些基础东西之后,搭配上文章中的这些方法,那你用Pandas去做数据处理和分析必然会游刃有余。

    4.8K40

    Pandas数据应用:用户行为分析

    Pandas作为Python中强大的数据分析库,为处理和分析用户行为数据提供了极大的便利。本文将从基础概念入手,逐步深入探讨如何使用Pandas进行用户行为分析,并介绍常见问题及解决方案。...要使用Pandas,首先需要确保已安装:pip install pandas二、加载与初步探索数据在开始分析之前,我们需要先加载数据。通常情况下,用户行为数据会以CSV文件的形式存储。...此外,还可以使用info()获取更详细的信息,例如每列的数据类型、非空值数量等。三、常见问题及解决方法(一)数据缺失在实际应用中,数据往往存在缺失的情况。这可能会影响后续的分析结果。...(二)SettingWithCopyWarning当对一个经过筛选后的DataFrame副本进行修改时会触发该警告。为避免这个问题,可以在创建子集时明确指定.copy()方法。...六、总结通过对Pandas的学习与实践,我们能够更加轻松地完成用户行为分析任务。掌握上述技巧后,相信你在面对真实世界的数据挑战时会更加从容。

    15100

    python数据分析——数据预处理

    输出结果显示第 2 和第 4 个位置的值为 True,表示对应位置的值为空值。 示例 【例】若某程序员对淘宝网站爬虫后得到原始数据集items.csv,文件内容形式如下所示。...有关更多详细信息,请参阅pandas文档中关于interpolate方法的说明。 示例一 【例】使用近邻填补法,即利用缺失值最近邻居的值来填补数据,对df数据中的缺失值进行填补,这种情况该如何实现?...分组处理:使用.groupby()方法可以按照指定的列对DataFrame进行分组,并进行相关的处理。...六、索引设置 索引能够快速查询数据,本节主要介绍索引的应用。 索引的作用相当于图书的目录,可以根据目录中的页码快速找到所需的内容, Pandas库中索引的作用如下: 更方便地查询数据。...若要对这些缺失值进行填补,可以设置reindex()方法中的method参数, method参数表示重新设置索引时,选择对缺失数据插值的方法。

    16810

    Pandas图鉴(二):Series 和 Index

    你逐一进行了几次查询,每次都缩小了搜索范围,但只看了列的一个子集,因为同时看到所有的一百个字段是不现实的。现在你已经找到了目标行,想看到原始表中关于它们的所有信息。一个数字索引可以帮助你立即得到它。...使用者对缺失值特别关注。...不要对具有非唯一索引的系列使用算术运算。 比较 对有缺失值的数组进行比较可能很棘手。...缺失值被当作普通值处理,这有时可能会导致令人惊讶的结果。 如果想排除NaN,你需要明确地做到这一点。在这个特殊的例子中,s.dropna().is_unique == True。...这个惰性的对象没有任何有意义的表示,但它可以是: 迭代(产生分组键和相应的子系列--非常适合于调试): groupby 以与普通系列相同的方式进行查询,以获得每组的某个属性(比迭代快): 所有操作都不包括

    34120

    Python数据分析与实战挖掘

    ,用于建立神经网络以及深度学习模型 Gensim 文本主题模型的库,文本挖掘用 ----- 贵阳大数据认证 ----- Numpy 提供了数组功能,以及对数据进行快速处理的函数。...支持类似于SQL的增删改查,有丰富的数据处理函数,支持时间序列分析功能,支持灵活处理缺失数据等 Pandas基本的数据结构实Series和DataFrame,序列(一维数组)和表格(二维数组) StatsModels.../Numpy isnull 判断是否为空 Pandas notnull 判断是否非空 Pandas PCA 主成分分析 Scikit-Learn random 生成随机矩阵 Numpy 挖掘建模 分类与预测.../Numpy isnull 判断是否为空 Pandas notnull 判断是否非空 Pandas PCA 主成分分析 Scikit-Learn random 生成随机矩阵 Numpy 主要回归模型分类...人工神经网络——keras BP神经网络 信息正传播,误差逆传播 LM神经网络 给予梯度下降法和牛顿法的多层前馈神经网络,迭代次数少,收敛块,精度高 RBF径向基神经网络 能以任意精度逼近任意连续函数

    3.7K60

    Python数据分析之数据预处理(数据清洗、数据合并、数据重塑、数据转换)学习笔记

    一般空值使用None表示,缺失值使用NaN表示  1.1.1 使用isnull()和notnull()函数  ​ 可以判断数据集中是否存在空值和缺失值  1.1.1.1 isnull()语法格式:  pandas...常用的检测方法有3σ原则(拉依达准则)和箱形图  ​ 3σ原则是基于正态分布的数据检洳而箱形图没有什么严格的要求,可以检测任意一组数据,  1.3.1.1 3σ原则  ​ 是指假设一组检测数据只含有随机误差,对其进行计算处理得到标准偏差...如果希望对异常值进行修改,则可以使用replace()方法进行替换,该方法不仅可以对单个数据进行替换,也可以多个数据执行批量替换操作。  ​...创建 Pandas数据对象时,如果没有明确地指出数据的类型,则可以根据传入的数据推断出来并且通过 dtypes属性进行查看。 ...merge()函数还支持对含有多个重叠列的 Data frame对象进行合并。  ​ 使用外连接的方式将 left与right进行合并时,列中相同的数据会重叠,没有数据的位置使用NaN进行填充。

    5.5K00

    Pandas必会的方法汇总,数据分析必备!

    7 Series.value_counts() 返回不同数据的计数值 8 df.reset_index() 重新设置index,参数drop = True时会丢弃原来的索引,设置新的从0开始的索引,常与...(过滤行)、切片(行切片)、或布尔型DataFrame(根据条件设置值) 2 df.loc[val] 通过标签,选取DataFrame的单个行或一组行 3 df.loc[:,val] 通过标签,选取单列或列子集...22 .unique() 返回一个Series中的唯一值组成的数组。...默认会返回一个新的对象,传入inplace=True可以对现有对象进行就地修改。 2 .duplicated() 判断各行是否是重复行,返回一个布尔型Series。...如果你已经清楚了Pandas的这些基础东西之后,搭配上文章中的这些方法,那你用Pandas去做数据处理和分析必然会游刃有余。

    5.9K20

    Pandas数据处理4、DataFrame记录重复值出现的次数(是总数不是每个值的数量)

    处理,在最基础的OpenCV中也会有很多的Pandas处理,所以我OpenCV写到一般就开始写这个专栏了,因为我发现没有Pandas处理基本上想好好的操作图片数组真的是相当的麻烦,可以在很多AI大佬的文章中发现都有这个...本专栏会更很多,只要我测试出新的用法就会添加,持续更新迭代,可以当做【Pandas字典】来使用,期待您的三连支持与帮助。...版本:1.4.4 基础函数的使用 Pandas数据处理——渐进式学习1、Pandas入门基础 Pandas数据处理——渐进式学习、DataFrame(函数检索-请使用Ctrl+F搜索) ---- DataFrame...nums = [1, 1, 1, 6, 6, 6, 7, 8] count = Counter(nums) # 统计词频 print(count) 测试数据输出可以看到依然是Counter类型,我们需要进行具体的遍历...Counter(nums) # 统计词频 for k, v in count.items(): print(k, v) 遍历效果: ​​​​​​​ 到这里就能看到用法了,我们可以根据这个数据进行排序

    2.4K30

    pandas数据清洗,排序,索引设置,数据选取

    此教程适合有pandas基础的童鞋来看,很多知识点会一笔带过,不做详细解释 Pandas数据格式 Series DataFrame:每个column就是一个Series 基础属性shape,index...(['k1','k2'], take_last=True)# 保留 k1和k2 组合的唯一值的行,take_last=True 保留最后一行 ---- 排序 索引排序 # 默认axis=0,按行索引对行进行排序...) 值排序 # 按值对Series进行排序,使用order(),默认空值会置于尾部 s = pd.Series([4, 6, np.nan, 2, np.nan]) s.order() df.sort_values...(['race','sex'], inplace = True) # 默认情况下,设置成索引的列会从DataFrame中移除 # drop=False将其保留下来 adult.set_index([...模糊筛选数据(类似SQL中的LIKE) # 使用正则表达式进行模糊匹配,*匹配0或无限次,?

    3.3K20

    python数据处理 tips

    在本文中,我将分享一些Python函数,它们可以帮助我们进行数据清理,特别是在以下方面: 删除未使用的列 删除重复项 数据映射 处理空数据 入门 我们将在这个项目中使用pandas,让我们安装包。...处理空数据 ? 此列中缺少3个值:-、na和NaN。pandas不承认-和na为空。在处理它们之前,我们必须用null替换它们。...这在进行统计分析时非常有用,因为填充缺失值可能会产生意外或有偏差的结果。 解决方案2:插补缺失值 它意味着根据其他数据计算缺失值。例如,我们可以计算年龄和出生日期的缺失值。...注:平均值在数据不倾斜时最有用,而中位数更稳健,对异常值不敏感,因此在数据倾斜时使用。 在这种情况下,让我们使用中位数来替换缺少的值。 ?...现在你已经学会了如何用pandas清理Python中的数据。我希望这篇文章对你有用。如果我有任何错误或打字错误,请给我留言。

    4.4K30

    《利用Python进行数据分析·第2版》第7章 数据清洗和准备7.1 处理缺失数据7.2 数据转换7.3 字符串操作7.4 总结

    幸运的是,pandas和内置的Python标准库提供了一组高级的、灵活的、快速的工具,可以让你轻松地将数据规变为想要的格式。...当进行数据清洗以进行分析时,最好直接对缺失数据进行分析,以判断数据采集的问题或缺失数据可能导致的偏差。...你可以通过pandas.isnull或布尔索引的手工方法,但dropna可能会更实用一些。...pandas对此进行了加强,它使你能够对整组数据应用字符串表达式和正则表达式,而且能处理烦人的缺失数据。 字符串对象方法 对于许多字符串处理和脚本应用,内置的字符串方法已经能够满足要求了。...下一章,我们会学习pandas的聚合与分组

    5.3K90

    pandas技巧4

    本文中记录Pandas操作技巧,包含: 导入数据 导出数据 查看、检查数据 数据选取 数据清洗 数据处理:Filter、Sort和GroupBy 数据合并 常识 # 导入pandas import pandas...,并返回一个Boolean数组 pd.notnull() # 检查DataFrame对象中的非空值,并返回一个Boolean数组 df.dropna() # 删除所有包含空值的行 df.dropna(axis...:Filter、Sort和GroupBy df[df[col] > 0.5] # 选择col列的值大于0.5的行 df.sort_index().loc[:5] #对前5条数据进行索引排序 df.sort_values...df1.join(df2.set_index(col1),on=col1,how='inner') # 对df1的列和df2的列执行SQL形式的join,默认按照索引来进行合并,如果df1和df2有共同字段时...,会报错,可通过设置lsuffix,rsuffix来进行解决,如果需要按照共同列进行合并,就要用到set_index(col1) pd.merge(df1,df2,on='col1',how='outer

    3.4K20

    Python~Pandas 小白避坑之常用笔记

    ; 2、Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具; 3、pandas提供了大量能使我们快速便捷地处理数据的函数和方法;它是使Python成为强大而高效的数据分析环境的重要因素之一...axis:0(对行数据进行剔除)、1(对列数据进行剔除),默认为0 how:any(行中有任意一个空值则剔除), all(行中全部为空值则剔除) inplace:是否在该对象进行修改 import...row['Age'] = row['Age'].replace('岁', '').strip() # 需要修改的字段定义 sheet1.loc[index] = row # 根据索引对该行数据进行修改...- map() def data_parse(rows): return '1111' # map() 将该列的元素迭代传入data_parse()函数作为参数,可以在函数内对该数据进行处理...的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法,续有常用的pandas函数会在这篇博客中持续更新。

    3.1K30

    【数据处理包Pandas】数据载入与预处理

    中缺失值的表示 Pandas 表示缺失值的一种方法是使用NaN(Not a Number),它是一个特殊的浮点数;另一种是使用 Python 中的None,Pandas 会自动把None转变成NaN。...() 0 False 1 True 2 False 3 True dtype: bool 判断缺失值的个数: data.isnull().sum() 2 用布尔数组进行检索:...thresh 阈值设定,当行列中非空值的数量少于给定的值就将该行丢弃 subset 表示进行去重的列/行,如:subset=[ ’a’ ,’d’],即丢弃子列 a d 中含有缺失值的行 inplace...df.dropna(axis='columns') 更精确的缩小删除范围,需要使用how或thresh(阈值)参数。 df[3] = np.nan df 只有全为空值的列才会被删除。...默认为 False,表示返回一个新的 DataFrame;如果设为 True,则在原 DataFrame 上进行操作,并返回 None。 ignore_index:可选参数,指定是否重新设置索引。

    12610
    领券