首页
学习
活动
专区
圈层
工具
发布

PyTorch入门笔记-创建已知分布的张量

()(tensor.numel() 函数返回 tensor 中的元素个数); 隐式相等其实就是 PyTorch 中的广播机制,PyTorch 中的广播机制和 TensorFlow 以及 Numpy 中的广播机制类似...比如传入参数 mean 的张量形状为 [1, 2],而传入参数 std 的张量形状为 [2, 2],PyTorch 会根据广播机制的规则将传入 mean 参数的张量形状广播成 [2, 2]。...「虽然传入的两个张量元素总个数不相等,但是通过 PyTorch 中的广播机制可以将符合广播机制的张量扩展成相同元素总个数的两个张量;」 >>> import torch >>> # 传入mean和std...PyTorch 的官方文档中强调:"当输入参数 mean 和 std 的张量形状不匹配的时候,输出张量的形状由传入 mean 参数的张量形状所决定。"...代码段,「这是因为当传入的两个张量形状不匹配,但是元素总个数相等的情况下,PyTorch 会使用 reshape 函数将传入参数 std 的张量形状改变成和传入 mean 参数张量相同的形状,这可能会引发一些问题

3.6K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pytorch和tensorflow的爱恨情仇之张量

    pytorch和tensorflow的爱恨情仇之基本数据类型:https://www.cnblogs.com/xiximayou/p/13759451.html pytorch版本:1.6.0 tensorflow...1、pytorch中的张量 (1)通过torch.Tensor()来建立常量 ?...我们传入的值就不能是一个列表了,需要一个张量,我们可以这么做: ? 这也可以说明常量是可以转换为变量的。但需要注意的是由常量转换而来的变量就不是原来的常量了: ?...2、tensorflow中的张量 在tensorflow中,可以通过tf.consatnt()和tf.Variable()来建立张量,与pytorch旧版本类似的是,tf.constant()对应torch.Tensor...如果我们像pytorch那样将常量转换为变量: ? 会发现,其实是新建了一个变量,并不是将原始的常量变为了变量、 如果有什么错误还请指出,有什么遗漏的还请补充,会进行相应的修改。

    2.4K52

    PyTorch入门笔记-张量的运算和类型陷阱

    加、减、乘、除 加、减、乘、除是最基本的数学运算,分别通过 torch.add、torch.sub、torch.mul 和 torch.div 函数实现,Pytorch 已经重载了 +、-、* 和 /...在 PyTorch 中,除数为 0 时程序并不会报错,而是的等于 inf。...这些加、减、乘、除基本的数学运算在 PyTorch 中的实现都比较简单,但是在使用过程中还是需要注意以下几点(下面都以乘法为例,其余三种运算同理): 参与基本数学运算的张量必须形状一致,或者可以通过广播机制扩展到相同的形状...NumPy 一样,都是 Element-Wise(逐元素运算),因此 torch.mul 实现的并不是张量乘法(两个张量相乘后的张量形状遵循:中间相等取两头的规则),而是相乘张量中对应位置的元素相乘;...矩阵乘法要求相乘的张量类型一致; 原地操作由于将运算后的张量赋值给原始张量,但是如果运算后的张量和原始张量的类型不一样,也会抛出错误。

    2K21

    PyTorch入门视频笔记-创建数值相同的张量

    1 的张量。...,这里简单介绍一下这些参数: *size: 定义输出张量形状的整数序列,这个整数序列可以是列表和数组之类的集合也可以是整数的 torch.Size(执行 tensor.size() 获取 tensor...format(scalar_one.dim(), scalar_one)) Out[5]: 张量的维度:0,张量的值:0.0 张量的维度:0,张量的值:1.0 In[6]: # 创建和张量...创建自定义数值张量 除了将张量的元素值初始化全为 0 或全为 1 的张量依然,有时候也需要全部初始化为某个自定义数值的张量。...size: 定义输出张量形状的整数序列,这个整数序列可以是列表和数组之类的集合也可以是整数的 torch.Size(执行 tensor.size() 获取 tensor 形状的结果为 torch.Size

    1.6K10

    PyTorch: 张量的拼接、切分、索引

    本文已收录于Pytorch系列专栏: Pytorch入门与实践 专栏旨在详解Pytorch,精炼地总结重点,面向入门学习者,掌握Pytorch框架,为数据分析,机器学习及深度学习的代码能力打下坚实的基础...进行切分 返回值:张量列表 tensor : 要切分的张量 split_size_or_sections 为 int 时,表示 每一份的长度;为 list 时,按 list 元素切分 dim 要切分的维度...注意list中长度总和必须为原张量在改维度的大小,不然会报错。...:在维度dim 上,按 index 索引数据 返回值:依index 索引数据拼接的张量 input : 要索引的张量 dim 要索引的维度 index 要索引数据的序号 code: t = torch.randint...True 进行索引 返回值:一维张量(无法确定true的个数,因此也就无法显示原来的形状,因此这里返回一维张量) input : 要索引的张量 mask 与 input 同形状的布尔类型张量 t

    1.4K30

    PyTorch入门笔记-改变张量的形状

    view和reshape PyTorch 中改变张量形状有 view、reshape 和 resize_ (没有原地操作的resize方法未来会被丢弃) 三种方式,「其中 resize_ 比较特殊,它能够在修改张量形状的同时改变张量的大小...view 只能用于数据连续存储的张量,而 reshape 则不需要考虑张量中的数据是否连续存储 nD 张量底层实现是使用一块连续内存的一维数组,由于 PyTorch 底层实现是 C 语言 (C/C++...比如对于下面形状为 (3 x 3) 的 2D 张量: 2D 张量在内存中实际以一维数组的形式进行存储,行优先的方式指的是存储的顺序按照 2D 张量的行依次存储。...上面形状为 (3 x 3) 的 2D 张量通常称为存储的逻辑结构,而实际存储的一维数组形式称为存储的物理结构。...可以通过 tensor.is_contiguous() 来查看 tensor 是否为连续存储的张量; PyTorch 中的转置操作能够将连续存储的张量变成不连续存储的张量; >>> import torch

    4.4K40

    PyTorch中张量的创建方法的选择 | Pytorch系列(五)

    文 |AI_study 欢迎回到PyTorch神经网络编程系列。在这篇文章中,我们将仔细研究将数据转换成PyTorch张量的主要方法之间的区别。 ?...在这篇文章的最后,我们将知道主要选项之间的区别,以及应该使用哪些选项和何时使用。言归正传,我们开始吧。 我们已经见过的PyTorch张量就是PyTorch类torch.Tensor 的实例。...张量和PyTorch张量之间的抽象概念的区别在于PyTorch张量给了我们一个具体的实现,我们可以在代码中使用它。 ?...对于索引0,前两个o1和o2仍具有原始值1,而对于索引0,后两个 o3 和 o4 具有新值0。...torch.from_numpy() 函数仅接受 numpy.ndarrays,而torch.as_tensor() 函数则接受包括其他PyTorch张量在内的各种数组对象。

    2.1K41

    PyTorch入门笔记-增删张量的维度

    增加维度 增加一个长度为 1 的维度相当于给原有的张量添加一个新维度的概念。由于增加的新维度长度为 1,因此张量中的元素并没有发生改变,仅仅改变了张量的理解方式。...比如一张 大小的灰度图片保存为形状为 的张量,在张量的头部增加一个长度为 1 的新维度,定义为通道数维度,此时张量的形状为 。 “图片张量的形状有两种约定: 通道在后的约定。...PyTorch 将通道维度放在前面: ” 使用 torch.unsqueeze(input, dim) 可以在指定的 dim 维度前插入一个长度为 1 的新维度。...对于输入张量为 的图片张量而言,张量的维度为 4,其 dim 参数的取值范围为 ,对比不同维度的输入张量: 输入张量的维度 input.dim() = 2 时,dim 参数的取值范围为 输入张量的维度...dim = 5) error >>> # print(x.size()) Traceback (most recent call last): File "/home/chenkc/code/pytorch

    5K30

    pytorch张量的创建

    张量的创建 张量(Tensors)类似于NumPy的ndarrays ,但张量可以在GPU上进行计算。从本质上来说,PyTorch是一个处理张量的库。一个张量是一个数字、向量、矩阵或任何n维数组。...size: 张量的形状 out: 输出的张量 layout: 内存中布局形式 device: 所在设备 requires_grad: 是否需要梯度 torch.zeros(2, 3) tensor...input: 创建与input同形状的全0张量 dtype: 数据类型 layout: 内存中布局形式 input = torch.empty(2, 3) torch.zeros_like(input...size: 张量的形状 dtype: 数据类型 layout: 内存中布局形式 device: 所在设备 requires_grad: 是否需要梯度 input = torch.empty(2...size: 张量的形状 fill_value: 张量的值 torch.arange(start=0, end. step=1, out=None, dtype=None, layout=torch.strided

    19610

    布尔值数组的状态压缩

    相应地,会设定一个布尔值数组visited[ i ] [ j ],表示某一个位置是否被遍历,true表示被遍历,false表示未被遍历。...我们首先看看图论建模是如何建模的, 二维数组会有两个索引下标i和j,分别对阵为行和列。我们会设定一个常量C,而这个常量正是列的长度,即nums[i].length。...这里就不进行多介绍了,因为本篇介绍布尔值数组压缩状态的小技巧,再讲三维矩阵的图论建模就偏了,了解二维矩阵就好了。...在进行二维矩阵的图论建模中,如果不转成图形结构,直接在二维矩阵上计算,我们会设定一个布尔类型的二维数组visited,数组的值表示图的某个节点是否遍历过。...= 0) visited -= 1<<i; 举一反三,学会了二进制数组压缩成一个数字的状态,多进制数组也同样可以压缩状态,只需要找到最大的那个数就可以了。

    1.8K30

    具有张量流的混合密度网络

    我花了几天的时间阅读他们的API和教程,我非常满意这些我所看到的内容。 尽管其他库提供了类似的功能,如GPU计算和符号差异化,但是它API的整洁性和对IPython栈的熟悉使其吸引我使用。...Bishop的MDN实现将预测被称为混合高斯分布的一类概率分布,其中输出值被建模为许多高斯随机值的总和,每个高斯随机值都具有不同的均值和标准差。...在我们的实现中,我们将使用一个后来隐藏的24个节点的神经网络,并且还将产生24个混合,因此将有72个实际输出的单个输入的神经网络。...由于指数运算符,每个概率也将是正的。它比我们想象的更为深入!在Bishop的论文中,他指出softmax和指数术语从一个贝叶斯框架的概率观点上来说,有一些理论上的解释。...由于这是一个更为复杂的预测任务,与之前的简单数据拟合任务相比,我使用了更多的样本。

    2.1K60
    领券