首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

删除Pandas Dataframe列范围内每列总和小于10的列

问题:删除Pandas Dataframe列范围内每列总和小于10的列

回答:在Pandas中,我们可以使用sum()函数计算Dataframe中每列的总和。要删除列范围内每列总和小于10的列,可以按照以下步骤进行操作:

  1. 首先,导入所需的库并读取Dataframe:
代码语言:txt
复制
import pandas as pd

# 读取Dataframe
df = pd.read_csv("your_data.csv")
  1. 接下来,计算每列的总和并筛选出满足条件的列:
代码语言:txt
复制
# 计算每列的总和
column_sums = df.sum()

# 筛选出总和小于10的列
columns_to_delete = column_sums[column_sums < 10].index
  1. 最后,使用drop()函数删除指定的列:
代码语言:txt
复制
# 删除满足条件的列
df = df.drop(columns_to_delete, axis=1)

完整的代码示例:

代码语言:txt
复制
import pandas as pd

# 读取Dataframe
df = pd.read_csv("your_data.csv")

# 计算每列的总和
column_sums = df.sum()

# 筛选出总和小于10的列
columns_to_delete = column_sums[column_sums < 10].index

# 删除满足条件的列
df = df.drop(columns_to_delete, axis=1)

对于这个问题,我推荐使用腾讯云的数据计算产品TencentDB和腾讯云对象存储COS来存储和处理数据。TencentDB提供高性能、高可用的数据库解决方案,适用于各种规模的数据存储和处理需求。腾讯云对象存储COS则提供了可扩展的、安全可靠的云端存储服务,适用于大规模数据的存储和访问。您可以通过以下链接了解更多腾讯云相关产品:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

pandas dataframe删除一行或一列:drop函数

pandas dataframe删除一行或一列:drop函数 【知识点】 用法: DataFrame.drop(labels=None,axis=0,index=None,columns=None, inplace...=False) 参数说明: labels 就是要删除的行列的名字,用列表给定 axis 默认为0,指删除行,因此删除columns时要指定axis=1; index 直接指定要删除的行 columns...直接指定要删除的列 inplace=False,默认该删除操作不改变原数据,而是返回一个执行删除操作后的新dataframe; inplace=True,则会直接在原数据上进行删除操作,删除后无法返回。...因此,删除行列有两种方式: 1)labels=None,axis=0的组合 2)index或columns直接指定要删除的行或列 【实例】 # -*- coding: UTF-8 -*- import...pandas as pd df=pd.read_excel('data_1.xlsx') print(df) df=df.drop(['学号','语文'],axis=1) print(df) df=df.drop

4.7K30
  • pandas按行按列遍历Dataframe的几种方式

    遍历数据有以下三种方法: 简单对上面三种方法进行说明: iterrows(): 按行遍历,将DataFrame的每一行迭代为(index, Series)对,可以通过row[name]对元素进行访问。...itertuples(): 按行遍历,将DataFrame的每一行迭代为元祖,可以通过row[name]对元素进行访问,比iterrows()效率高。...iteritems():按列遍历,将DataFrame的每一列迭代为(列名, Series)对,可以通过row[index]对元素进行访问。...示例数据 import pandas as pd inp = [{‘c1’:10, ‘c2’:100}, {‘c1’:11, ‘c2’:110}, {‘c1’:12, ‘c2’:123}] df =...(index) # 输出每行的索引值 1 2 row[‘name’] # 对于每一行,通过列名name访问对应的元素 for row in df.iterrows(): print(row[‘c1

    7.1K20

    对比Excel,Python pandas删除数据框架中的列

    标签:Python与Excel,pandas 删除列也是Excel中的常用操作之一,可以通过功能区或者快捷菜单中的命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行的一些方法,删除列与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...准备数据框架 创建用于演示删除列的数据框架,仍然使用前面给出的“用户.xlsx”中的数据。 图1 .drop()方法 与删除行类似,我们也可以使用.drop()删除列。...唯一的区别是,在该方法中,我们需要指定参数axis=1。下面是.drop()方法的一些说明: 要删除单列:传入列名(字符串)。 删除多列:传入要删除的列的名称列表。...下面是我用来决定使用哪种方法的一些技巧。 .drop() 当有许多列,而只需要删除一些列时,效果最佳。在这种情况下,我们只需要列出要删除的列。

    7.2K20

    pandas每天一题-题目15:删除列的多种方式

    这是一个关于 pandas 从基础到进阶的练习题系列,来源于 github 上的 guipsamora/pandas_exercises 。...需求:各种删除列的方式 下面是答案了 ---- 方式1 这是 python 删除变量的操作,同样适用于 DataFrame 删除列: 1del df['order_id'] 2df 也可以同时删除多列...方法: 1df.drop('order_id',axis=1) 方法直接返回删除列后的新表格(DataFrame) 参数 axis=1,表示删除列。...pandas 为此提供了一个方法直接完成2个操作: 1ids = df.pop('order_id') pop 方法会提取指定列并返回,然后从 df 中移除这一列 这与方式1一样是会修改原数据 点评:...此方法没啥大作用,不推荐使用 ---- 推荐阅读: 懂Excel就能轻松入门Python数据分析包pandas(八):匹配查找 pandas输出的表格竟然可以动起来?

    65820

    Pandas实现这列股票代码中10-12之间的股票筛出来

    一、前言 前几天在Python白银交流群【YVONNE】问了一个Pandas数据分析的问题,一起来看看吧。 问题描述:原始数据长这样 ,我需要把SHRCD这列股票代码中10-12之间的股票筛出来。...原始数据如下图所示: 他的报错内容如下所示: 他说我不能比int和str ,但我以为我取证以后就直接是int了,所以不知道怎么改 也可能是我没搞懂int和str。...二、实现过程 这里【莫生气】给了一个思路: 看上去整体代码没啥问题,主要是括号的不对称导致的。 经过点拨,顺利地解决了粉丝的问题。后来【瑜亮老师】也指出其实不用转换成int也能比较大小。...另外代码有提示的,这里标红了,可以针对性的解决问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题

    18410

    数据导入与预处理-第5章-数据清理

    2.1.2 删除缺失值 pandas中提供了删除缺失值的方法dropna(),dropna()方法用于删除缺失值所在的一行或一列数据,并返回一个删除缺失值后的新对象。...DataFrame.dropna(axis=0, how='any', thresh=None, subset=None,inplace=False) axis:表示是否删除包含缺失值的行或列。...# 使用isna()方法检测na_df中是否存在缺失值 na_df.isna() 输出为: 计算每列缺失值的总和: # 计算每列缺失值的总和 na_df.isnull().sum() 输出为...DataFrame.duplicated(subset=None, keep='first') subset:表示识别重复项的列索引或列索引序列,默认标识所有的列索引。...,该值的范围通常为小于Q1 – 1.5IQR或大于Q3 + 1.5IQR 为了能够直观地从箱形图中查看异常值,pandas中提供了两个绘制箱形图的函数:plot()和boxplot(),其中plot

    4.5K20

    用 Pandas 进行数据处理系列 二

    获取指定的列和行 import pandas as pd df = pd.read_csv('xxxx.xls') 获取行操作df.loc[3:6]获取列操作df['rowname']取两列df[['...( Nan ),排序的时候会将其排在末尾 基本用法 数据表信息查看 df.shape维度查看df.info()数据表基本信息,包括围度、列名、数据格式、所占空间df.dtypes每一列的数据格式df[‘...[‘b’].unique()查看某一列的唯一值df.values查看数据表的值df.columns查看列名df.head()查看默认的前 10 行数据df.tail()查看默认的后 10 行数据 数据表清洗...,然后将符合条件的数据提取出来pd.DataFrame(category.str[:3])提取前三个字符,并生成数据表 数据筛选 使用与、或、非三个条件配合大于、小于、等于对数据进行筛选,并进行计数和求和...、总和和平均数 数据统计 数据采样,计算标准差、协方差和相关系数。

    8.2K30

    手把手教你做一个“渣”数据师,用Python代替老情人Excel

    8、筛选不在列表或Excel中的值 ? 9、用多个条件筛选多列数据 输入应为列一个表,此方法相当于excel中的高级过滤器功能: ? 10、根据数字条件过滤 ?...五、数据计算 1、计算某一特定列的值 输出结果是一个系列。称为单列数据透视表: ? 2、计数 统计每列或每行的非NA单元格的数量: ? 3、求和 按行或列求和数据: ? 为每行添加总列: ?...4、将总列添加到已存在的数据集 ? 5、特定列的总和,使用loc函数 ? 或者,我们可以用以下方法: ? 6、用drop函数删除行 ? 7、计算每列的总和 ?...以上,我们使用的方法包括: Sum_Total:计算列的总和 T_Sum:将系列输出转换为DataFrame并进行转置 Re-index:添加缺少的列 Row_Total:将T_Sum附加到现有的DataFrame...10、求算术平均值 ? 11、求最大值 ? 12、求最小值 ? 13、Groupby:即Excel中的小计函数 ? 六、DataFrame中的数据透视表功能 谁会不喜欢Excel中的数据透视表呢?

    8.4K30

    Pandas速查手册中文版

    (1)官网: Python Data Analysis Library (2)十分钟入门Pandas: 10 Minutes to pandas 在第一次学习Pandas的过程中,你会发现你需要记忆很多的函数和方法...():检查DataFrame对象中的空值,并返回一个Boolean数组 pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组 df.dropna():删除所有包含空值的行...df.dropna(axis=1):删除所有包含空值的列 df.dropna(axis=1,thresh=n):删除所有小于n个非空值的行 df.fillna(x):用x替换DataFrame对象中所有的空值...):返回按列col1分组的所有列的均值 data.apply(np.mean):对DataFrame中的每一列应用函数np.mean data.apply(np.max,axis=1):对DataFrame...df.corr():返回列与列之间的相关系数 df.count():返回每一列中的非空值的个数 df.max():返回每一列的最大值 df.min():返回每一列的最小值 df.median():返回每一列的中位数

    12.2K92

    Pandas进阶修炼120题,给你深度和广度的船新体验

    .计算popularity列平均值 df['popularity'].mean() 10.将grammer列转换为list df['grammer'].to_list() 11.将DataFrame...保存为EXCEL df.to_excel('test.xlsx') 12.查看数据行列数 df.shape 13.提取popularity列值大于3小于7的行 df[(df['popularity'...(pd.Series(np.random.randint(1, 10, 135))) df1 43.将上一题生成的dataframe与df合并 df= pd.concat([df,df1],axis=...# 备注 # axis:0-行操作(默认),1-列操作 # how:any-只要有空值就删除(默认),all-全部为空值才删除 # inplace:False-返回新的数据集(默认),True-在原数据集上操作...() 93.将col1,col2,clo3三列顺序颠倒 df.ix[:, ::-1] 94.提取第一列位置在1,10,15的数字 df['col1'].take([1,10,15]) # 等价于 df.iloc

    6.2K31

    快速介绍Python数据分析库pandas的基础知识和代码示例

    我们可以通过df[:10].to_csv()保存前10行。我们还可以使用df.to_excel()保存和写入一个DataFrame到Excel文件或Excel文件中的一个特定表格。...我们也可以添加新的列 # Adding a new column to existing DataFrame in Pandas sex = ['Male','Female','Male','Female...有几个有用的函数用于检测、删除和替换panda DataFrame中的空值。...类似地,我们可以使用df.min()来查找每一行或每列的最小值。 其他有用的统计功能: sum():返回所请求的轴的值的总和。默认情况下,axis是索引(axis=0)。...mean():返回平均值 median():返回每列的中位数 std():返回数值列的标准偏差。 corr():返回数据格式中的列之间的相关性。 count():返回每列中非空值的数量。

    8.1K20

    建议收藏:12个Pandas数据处理高频操作

    +pop > 6 常用查询方法query > 7 数据存储时不要索引 > 8 按指定列排序sort_values > 9 apply 函数运用 > 10 Pandas数据合并 > 11 Pandas Dataframe...统计一行/一列数据的负数出现的次数 # 获取到每一行的复数个数 # 要获取列的话,将axis改成0即可 num_list = (df < 0).astype(int).sum(axis=1) num_list..., args=(), **kwds) > 10 Pandas数据合并 进行数据合并前,首先需要确定合并的数据的表头都是一致的,然后将他们依次加入一个列表,最终使用concat函数即可进行数据合并。...> 12 对于列/行的操作 删除指定行/列 # 行索引/列索引 多行/多列可以用列表 # axis=0表示行 axis=1表示列 inplace是否在原列表操作 # 删除df中的c列 df.drop(...# 将B列中小于0的元素和A列交换 # 筛选出B列中小于0的行 flag = df['B'].astype(int).map(lambda x: x<0) # 通过布尔提取交换两列数据 df.loc[

    2.7K20

    Python数据分析作业二:Pandas库的使用

    其中,Series 和 DataFrame 是 Pandas 中最常用的两个对象,分别对应于一维和二维数据的处理(Pandas 还有对三维甚至多维数据处理的 Panel 对象,但不太常用)。...然后,它从这些行中的 “交易额” 列中提取数值,并使用.sum()方法计算这些值的总和。...10、统计df中缺失值的个数 df.isnull().sum().sum() 使用.isnull()方法检查 DataFrame 中的每个单元格是否为空,并返回一个布尔值的 DataFrame,其中 True...然后,使用.sum()方法两次对这个布尔值的 DataFrame 进行求和,第一次对每列求和,第二次对每行的结果再求和。...最后,使用groupby方法将合并后的 DataFrame 按照 “姓名” 和 “职级” 进行分组,并计算每个组中 “交易额” 列的总和。

    10200

    Python中 Pandas 50题冲关

    Pandas 是基于 NumPy 的一种数据处理工具,该工具为了解决数据分析任务而创建。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的函数和方法。...(data, index=labels) df 显示df的基础信息,包括行的数量;列名;每一列值的数量、类型 df.info() # 方法二 # df.describe() 展示df的前3行 df.iloc...mean') 进阶操作 有一列整数列A的DatraFrame,删除数值重复的行 df = pd.DataFrame({'A': [1, 2, 2, 3, 4, 5, 5, 5, 6, 7, 7]})...,有列A, B,A的值在1-100(含),对A列每10步长,求对应的B的和 df = pd.DataFrame({'A': [1,2,11,11,33,34,35,40,79,99],...Air France', '"Swiss Air"']}) df FlightNumber列中有些值缺失了,他们本来应该是每一行增加10,填充缺失的数值,并且令数据类型为整数 df['FlightNumber

    4.2K30

    Pandas 50题练习

    Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的函数和方法。这些练习着重DataFrame和Series对象的基本操作,包括数据的索引、分组、统计和清洗。...(data, index=labels) df 显示df的基础信息,包括行的数量;列名;每一列值的数量、类型 df.info() # 方法二 # df.describe() 展示df的前3行 df.iloc...mean') 进阶操作 有一列整数列A的DatraFrame,删除数值重复的行 df = pd.DataFrame({'A': [1, 2, 2, 3, 4, 5, 5, 5, 6, 7, 7]})...,有列A, B,A的值在1-100(含),对A列每10步长,求对应的B的和 df = pd.DataFrame({'A': [1,2,11,11,33,34,35,40,79,99],...Air France', '"Swiss Air"']}) df FlightNumber列中有些值缺失了,他们本来应该是每一行增加10,填充缺失的数值,并且令数据类型为整数 df['FlightNumber

    3K20
    领券