双11商品智能识别选购涉及多个基础概念和技术应用。以下是对该问题的详细解答:
以下是一个简单的基于内容的推荐系统示例:
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import linear_kernel
# 假设我们有一个商品数据集
data = {
'product_id': [1, 2, 3],
'name': ['Laptop', 'Smartphone', 'Tablet'],
'description': [
'High performance laptop with long battery life.',
'Latest smartphone with advanced camera features.',
'Portable tablet with a large screen and good specs.'
]
}
df = pd.DataFrame(data)
# 使用TF-IDF向量化商品描述
tfidf = TfidfVectorizer(stop_words='english')
df['description'] = df['description'].fillna('')
tfidf_matrix = tfidf.fit_transform(df['description'])
# 计算商品之间的相似度
cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)
# 推荐函数
def get_recommendations(title, cosine_sim=cosine_sim):
idx = df.index[df['name'] == title].tolist()[0]
sim_scores = list(enumerate(cosine_sim[idx]))
sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
sim_scores = sim_scores[1:3] # 获取最相似的两个商品
product_indices = [i[0] for i in sim_scores]
return df['name'].iloc[product_indices]
# 示例调用
print(get_recommendations('Laptop'))
双11商品智能识别选购通过结合计算机视觉、深度学习和大数据分析等技术,为用户提供个性化的购物体验。在实际应用中,需要注意数据质量和算法优化,以确保系统的准确性和有效性。
领取专属 10元无门槛券
手把手带您无忧上云