首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

Python的GPU编程实例——近邻表计算

GPU加速是现代工业各种场景中非常常用的一种技术,这得益于GPU计算的高度并行化。在Python中存在有多种GPU并行优化的解决方案,包括之前的博客中提到的cupy、pycuda和numba.cuda,都是GPU加速的标志性Python库。这里我们重点推numba.cuda这一解决方案,因为cupy的优势在于实现好了的众多的函数,在算法实现的灵活性上还比较欠缺;而pycuda虽然提供了很好的灵活性和相当高的性能,但是这要求我们必须在Python的代码中插入C代码,这显然是非常不Pythonic的解决方案。因此我们可以选择numba.cuda这一解决方案,只要在Python函数前方加一个numba.cuda.jit的修饰器,就可以在Python中用最Python的编程语法,实现GPU的加速效果。

02

Python3实现打格点算法的GPU加速

在数学和物理学领域,总是充满了各种连续的函数模型。而当我们用现代计算机的技术去处理这些问题的时候,事实上是无法直接处理连续模型的,绝大多数的情况下都要转化成一个离散的模型再进行数值的计算。比如计算数值的积分,计算数值的二阶导数(海森矩阵)等等。这里我们所介绍的打格点的算法,正是一种典型的离散化方法。这个对空间做离散化的方法,可以在很大程度上简化运算量。比如在分子动力学模拟中,计算近邻表的时候,如果不采用打格点的方法,那么就要针对整个空间所有的原子进行搜索,计算出来距离再判断是否近邻。而如果采用打格点的方法,我们只需要先遍历一遍原子对齐进行打格点的离散化,之后再计算近邻表的时候,只需要计算三维空间下邻近的27个格子中的原子是否满足近邻条件即可。在这篇文章中,我们主要探讨如何用GPU来实现打格点的算法。

04

Manjaro Linux安装singularity-container

容器化技术在各种生产领域已经得到了广泛的应用,这得益于容器的轻量化(相比于虚拟机而言),安全性(隔离弱于虚拟机,但是权限控制得当的情况下也可以认为是安全隔离的)以及系统级虚拟化带来的高可用性(基于NameSpace和cgroup)。虽然现在各大平台的兼容性有趋同的势头,比如Windows推出了WSL子系统,使得用户在Windows机器上也可以很轻松的搭建Linux环境。但是容器依然保持着它的热度,这说明它的可用性并不是一个系统组件就可以替代的。前面几篇文章中我们介绍过Docker容器和Singularity容器的用法,这里我们再讲讲Singularity容器的非源码安装方法(Manjaro Linux平台),以及修改静态容器镜像文件的方法。

02
领券