模型正则化欠拟合与过拟合线性回归模型2次多项式回归4次多项式回归评估3种回归模型在测试数据集上的性能表现L1范数正则化Lasso模型在4次多项式特征上的拟合表现L2范数正则化
模型正则化
任何机器学习模型在训练集上的性能表现...欠拟合与过拟合
所谓拟合,是指机器学习模型在训练的过程中,通过更新参数,使得模型不断契合可观测数据(训练集)的过程。本文将使用一个“比萨饼价格预测”的例子来说明。...共有5组训练数据、4组测试数据,并且其中测试数据的比萨报价未知。先只考虑比萨的尺寸与售价的关系,那么使用线性回归模型比较直观。...根据代码输出的图,以及当前模型在训练集上的表现( R-squared值为0.9100),可以进一步猜测,也许比萨饼的面积与售价的线性关系中更加显。...为了使新优化目标最小化,这种正则化方法的结果会让参数向量中的大部分元素都变得很小,压制了参数之间的差异性。而这种压制参数之间差异性的L2正则化模型,通常被称为Ridge。