首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在目标检测中训练出假阳性

是指在训练模型过程中,模型错误地将负样本(非目标)错误地预测为正样本(目标)。这种情况可能会导致模型在实际应用中产生误报,即将非目标物体错误地识别为目标物体。

为了减少训练出假阳性的情况,可以采取以下措施:

  1. 数据预处理:对训练数据进行筛选和清洗,确保负样本和正样本的标注准确无误。同时,可以通过数据增强技术,如旋转、缩放、平移等操作,增加训练数据的多样性,提高模型的泛化能力。
  2. 调整模型参数:通过调整模型的超参数,如学习率、正则化项等,可以优化模型的训练过程,减少假阳性的产生。
  3. 使用更多的负样本:增加负样本的数量,使模型更加充分地学习到负样本的特征,从而减少假阳性的发生。
  4. 引入更复杂的模型结构:使用更复杂的目标检测模型,如Faster R-CNN、YOLO等,这些模型具有更强的特征提取和分类能力,可以有效减少假阳性的产生。
  5. 结合其他技术:可以结合其他技术,如图像分割、图像去噪等,进一步提高目标检测的准确性,减少假阳性的发生。

腾讯云相关产品推荐:

  • 腾讯云图像识别(https://cloud.tencent.com/product/imagerecognition):提供了丰富的图像识别能力,包括目标检测、图像分类等,可用于训练目标检测模型并应用于实际场景。
  • 腾讯云机器学习平台(https://cloud.tencent.com/product/tiia):提供了强大的机器学习能力,包括模型训练、模型部署等,可用于训练目标检测模型并进行模型优化。
  • 腾讯云视频智能分析(https://cloud.tencent.com/product/vca):提供了视频智能分析能力,包括目标检测、行为分析等,可用于训练目标检测模型并应用于视频监控等场景。

以上是针对目标检测中训练出假阳性的问题的一些解决方法和腾讯云相关产品的推荐。希望对您有所帮助!

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Soft-NMS – Improving Object Detection With One Line of Code

    非最大抑制是目标检测流程的重要组成部分。首先,它根据所有检测框的得分对它们进行排序。选择得分最大的检测框M,抑制与M有显著重叠(使用预定义阈值)的所有其他检测框。这个过程递归地应用于其余的框。按照算法的设计,如果一个目标重叠在预定义的阈值,就丢弃它。为此,我们提出Soft-NMS,衰变的算法检测的所有其他目标作为一个连续函数的重叠与m。因此,没有目标在这一过程中消除。Soft-NMS获得一致的改善coco-stylemAP指标,在标准数据集PASCAL VOC 2007 (RFCN 和Faster-RCNN上为) MS-COCO (R-FCN上1.3% 和Faster-RCNN上为 .1%) 没有过改变任何额外的hyper-parameters。NMS算法使用Deformable R-FCN,Sost-NMS在单一模型下将目标检测的最新水平从39.8%提高到40.9%。此外,Soft-NMS和传统的NMS计算复杂度很接近,因此能够有效实现。由于Soft-NMS不需要任何额外的训练,而且易于实现,因此可以轻松地集成到任何目标检流程中。

    02

    Dynamic Anchor Learning for Arbitrary-Oriented Object Detection

    任意方向的目标广泛出现在自然场景、航拍照片、遥感图像等,任意方向的目标检测受到了广泛的关注。目前许多旋转检测器使用大量不同方向的锚点来实现与ground truth框的空间对齐。然后应用交叉-联合(IoU)方法对正面和负面的候选样本进行训练。但是我们观察到,选择的正锚点回归后并不能总是保证准确的检测,而一些阴性样本可以实现准确的定位。这说明通过IoU对锚的质量进行评估是不恰当的,进而导致分类置信度与定位精度不一致。本文提出了一种动态锚学习(DAL)方法,利用新定义的匹配度综合评价锚的定位潜力,进行更有效的标签分配过程。这样,检测器可以动态选择高质量的锚点,实现对目标的准确检测,缓解分类与回归的分歧。在新引入的DAL中,我们只需要少量的水平锚点就可以实现对任意方向目标的优越检测性能。在三个遥感数据集HRSC2016、DOTA、UCAS-AOD以及一个场景文本数据集ICDAR 2015上的实验结果表明,与基线模型相比,我们的方法取得了实质性的改进。此外,我们的方法对于使用水平边界盒的目标检测也是通用的。

    01

    Unbiased Teacher v2: Semi-supervised Object Detection for Anchor-free and Anchor-based Detectors

    随着最近半监督目标检测(SS-OD)技术的发展,目标检测器可以通过使用有限的标记数据和丰富的未标记数据来改进。然而,仍有两个挑战没有解决:(1)在无锚检测器上没有先期的SS-OD工作,(2)在伪标签边界框回归时,先期工作是无效的。在本文中,我们提出了Unbiased Teacher v2,它显示了SS-OD方法在无锚检测器上的通用性,同时也为无监督回归损失引入了Listen2Student机制。特别是,我们首先提出了一项研究,检查现有的SS-OD方法在无锚检测器上的有效性,发现它们在半监督环境下取得的性能改进要低得多。我们还观察到,在半监督环境下,无锚检测器中使用的带 centerness 的框选择和基于定位的标签不能很好地工作。另一方面,我们的Listen2Student机制明确地防止在训练边界框回归时出现误导性的伪标签。边界框回归的训练中明确防止误导性的伪标签;我们特别开发了一种新的伪标签选择机制,该机制基于教师和学生的相对不确定性。和学生的相对不确定性为基础的新型伪标签选择机制。这一想法有助于在半监督环境下对回归分支进行了有利的改进。我们的方法,既适用于我们的方法适用于无锚和基于锚的方法,在VOC、 COCO-standard和COCO-additional中一直优于最先进的方法。

    02

    Cross-Domain Car Detection Using UnsupervisedImage-to-Image Translation: From Day to Night

    深度学习技术使最先进的模型得以出现,以解决对象检测任务。然而,这些技术是数据驱动的,将准确性委托给训练数据集,训练数据集必须与目标任务中的图像相似。数据集的获取涉及注释图像,这是一个艰巨而昂贵的过程,通常需要时间和手动操作。因此,当应用程序的目标域没有可用的注释数据集时,就会出现一个具有挑战性的场景,使得在这种情况下的任务依赖于不同域的训练数据集。共享这个问题,物体检测是自动驾驶汽车的一项重要任务,在自动驾驶汽车中,大量的驾驶场景产生了几个应用领域,需要为训练过程提供注释数据。在这项工作中,提出了一种使用来自源域(白天图像)的注释数据训练汽车检测系统的方法,而不需要目标域(夜间图像)的图像注释。 为此,探索了一个基于生成对抗网络(GANs)的模型,以实现生成具有相应注释的人工数据集。人工数据集(假数据集)是将图像从白天时域转换到晚上时域而创建的。伪数据集仅包括目标域的注释图像(夜间图像),然后用于训练汽车检测器模型。实验结果表明,所提出的方法实现了显著和一致的改进,包括与仅使用可用注释数据(即日图像)的训练相比,检测性能提高了10%以上。

    02

    半监督目标检测超强SOTA:Consistent-Teacher(附论文下载)

    在本研究中,研究者深入研究了半监督目标检测(SSOD)中伪目标的不一致性。核心观察结果是,振荡的伪目标破坏了精确的半监督检测器的训练。它不仅给学生的训练注入了噪声,而且导致了分类任务的严重过拟合。因此,研究者提出了一个系统的解决方案,称为一致教师,以减少不一致。首先,自适应锚分配(ASA)取代了基于静态IoU的策略,使学生网络能够抵抗噪声伪边界盒;然后,通过设计三维特征对齐模块(FAM-3D)来校准子任务预测。它允许每个分类特征在任意尺度和位置自适应地查询回归任务的最优特征向量。最后,高斯混合模型(GMM)动态地修正了伪框的得分阈值,从而稳定了基本事实的数量

    03

    谷歌用深度机器算法检测癌症,准确率高过医学博士!

    在检查患者的生物组织样品后, 病理学家的报告通常是许多疾病的黄金诊断标准。特别是对于癌症,病理学家的诊断对患者的治疗具有深远的影响。病理切片审查是一个非常复杂的任务,需要多年的培训才能做好,丰富的专业知识和经验也是必不可少的。 尽管都经过培训,但不同病理学家对同一患者给出的诊断结果,可能存在实质性的差异,而这可能导致误诊。例如,在某些类型的乳腺癌诊断中,诊断结论一致性竟低至48%,前列腺癌诊断的一致性也同样很低。诊断缺乏一致性低并不少见,因为如果想做出准确的诊断,必须检查大量的信息。病理学家通常只负责审查一

    05

    CVPR2023高质量论文 | Consistent-Teacher:半监督目标检测超强SOTA

    在本研究中,研究者深入研究了半监督目标检测(SSOD)中伪目标的不一致性。核心观察结果是,振荡的伪目标破坏了精确的半监督检测器的训练。它不仅给学生的训练注入了噪声,而且导致了分类任务的严重过拟合。因此,研究者提出了一个系统的解决方案,称为一致教师,以减少不一致。首先,自适应锚分配(ASA)取代了基于静态IoU的策略,使学生网络能够抵抗噪声伪边界盒;然后,通过设计三维特征对齐模块(FAM-3D)来校准子任务预测。它允许每个分类特征在任意尺度和位置自适应地查询回归任务的最优特征向量。最后,高斯混合模型(GMM)动态地修正了伪框的得分阈值,从而稳定了基本事实的数量

    04

    Semi-supervised learning-based satellite remote sensing object detection method for power transmissi

    众所周知,随着电网的日益复杂,传统的输电塔人工测量方法已经失效,无法满足安全稳定运行的要求。尽管卫星遥感技术的发展为输电塔的高效稳定测量提供了新的前景,但仍有许多问题需要解决。由于恶劣的气候和成像设备的限制,遥感图像中的一些输电塔目标是模糊的,这使得生成数据集和实现高精度输电塔目标检测变得极其困难。为了进一步提高发射塔的检测精度,首次将基于暗通道先验的图像增强算法应用于遥感图像,提高了图像的可解释性。然后,考虑到增强图像中仍有一些传输塔无法手动标记,采用了一种基于伪标记的半监督学习方法来最大限度地利用现有数据。基于这一高质量的数据集,利用移动倒瓶颈卷积和可变形卷积构建了一个传输塔卫星遥感目标检测模型。最后,根据我国某地区的卫星遥感图像数据集进行了烧蚀和对比实验。实验结果表明,图像增强和半监督学习方法都能提高检测精度,与现有主流模型相比,该方法性能更好。

    01

    DSNet:Joint Semantic Learning for Object

    近五十年来,基于卷积神经网络的目标检测方法得到了广泛的研究,并成功地应用于许多计算机视觉应用中。然而,由于能见度低,在恶劣天气条件下检测物体仍然是一项重大挑战。在本文中,我们通过引入一种新型的双子网(DSNet)来解决雾环境下的目标检测问题。该双子网可以端到端训练并共同学习三个任务:能见度增强、目标分类和目标定位。通过包含检测子网和恢复子网两个子网,DSNet的性能得到了完全的提高。我们采用RetinaNet作为骨干网络(也称为检测子网),负责学习分类和定位目标。恢复子网通过与检测子网共享特征提取层,采用特征恢复模块增强可见性来设计。实验结果表明我们的DSNet在合成的有雾数据集上达到了50.84%的mAP,在公开的有雾自然图像数据集上达到了41.91%的精度。性能优于许多最先进的目标检测器和除雾和检测方法之间的组合模型,同时保持高速。

    02

    2D-Driven 3D Object Detection in RGB-D Images

    在本文中,我们提出了一种在RGB-D场景中,在目标周围放置三维包围框的技术。我们的方法充分利用二维信息,利用最先进的二维目标检测技术,快速减少三维搜索空间。然后,我们使用3D信息来定位、放置和对目标周围的包围框进行评分。我们使用之前利用常规信息的技术,独立地估计每个目标的方向。三维物体的位置和大小是用多层感知器(MLP)学习的。在最后一个步骤中,我们根据场景中的目标类关系改进我们的检测。最先进的检测方法相比,操作几乎完全在稀疏的3D域,在著名的SUN RGB-D实验数据集表明,我们建议的方法要快得多(4.1 s /图像)RGB-D图像中的3目标检测和执行更好的地图(3)高于慢是4.7倍的最先进的方法和相对慢两个数量级的方法。这一工作提示我们应该进一步研究3D中2D驱动的目标检测,特别是在3D输入稀疏的情况下。

    03

    Super-Resolution on Object Detection Performance in Satellite Imagery

    探讨了超分辨率技术在卫星图像中的应用,以及这些技术对目标检测算法性能的影响。具体来说,我们提高了卫星图像的固有分辨率,并测试我们能否以比固有分辨率更高的精度识别各种类型的车辆、飞机和船只。使用非常深的超分辨率(VDSR)框架和自定义随机森林超分辨率(RFSR)框架,我们生成了2×、4×和8×的增强级别,超过5个不同的分辨率,范围从30厘米到4.8米不等。使用本地和超解析数据,然后使用SIMRDWN对象检测框架训练几个定制的检测模型。SIMRDWN将许多流行的目标检测算法(如SSD、YOLO)组合成一个统一的框架,用于快速检测大型卫星图像中的目标。这种方法允许我们量化超分辨率技术对跨多个类和分辨率的对象检测性能的影响。我们还量化了目标检测的性能作为一个函数的本机分辨率和目标像素大小。对于我们的测试集,我们注意到性能从30 cm分辨率下的平均精度(mAP) = 0.53下降到4.8 m分辨率下的mAP = 0.11。从30厘米图像到15厘米图像的超级分辨效果最好;mAP改进了13 - 36%。对于较粗的分辨率而言,超级分辨率的好处要小一些,但仍然可以在性能上提供小的改进。

    00

    目标检测的福音 | 如果特征融合还用FPN/PAFPN?YOLOX+GFPN融合直接起飞,再涨2个点

    目标检测任务是计算机视觉领域中最基本但最具挑战性的研究任务之一。该任务的目标是预测输入图像中每个物体的唯一边界框,该边界框不仅包含物体的位置信息,还包括框内物体的类别信息。近年来,这一任务得到了广泛的发展和应用,例如在自动驾驶和计算机辅助医学诊断等领域。当前主流的目标检测方法大致可以分为两类。一类是基于卷积神经网络(CNN)作为 Backbone 网络的方法,另一类是基于Transformer作为 Backbone 网络的方法。使用CNN作为 Backbone 网络的方法包括两阶段(如Faster R-CNN)方法和单阶段(如SSD和YOLO)方法。由于物体大小的不确定性,单个特征尺度的信息无法满足高精度识别性能的要求。

    01
    领券