首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Android开发笔记(一百五十六)通过渲染纹理展示地球仪

上一篇文章介绍了如何使用GL10描绘三维物体的线段框架,后面给出的立方体和球体效果图,虽然看起来具备立体的轮廓,可离真实的物体还差得远。因为现实生活中的物体不仅仅有个骨架,还有花纹有光泽(比如衣服),所以若想让三维物体更加符合实际,就得给它加一层皮,也可以说是加一件衣服,这个皮毛大衣用OpenGL的术语称呼则为“纹理”。 三维物体的骨架是通过三维坐标系表示的,每个点都有x、y、z三个方向上的数值大小。那么三维物体的纹理也需要通过纹理坐标系来表达,但纹理坐标并非三维形式而是二维形式,这是怎么回事呢?打个比方,裁缝店给顾客制作一件衣服,首先要丈量顾客的身高、肩宽,以及胸围、腰围、臀围等三围,然后才能根据这些身体数据剪裁布料,这便是所谓的量体裁衣。那做衣服的一匹一匹布料又是什么样子的?当然是摊开来一大片一大片整齐的布匹了,明显这些布匹近似于二维的平面。但是最终的成品衣服穿在顾客身上却是三维的模样,显然中间必定有个从二维布匹到三维衣服的转换过程。转换工作的一系列计算,离不开前面测量得到的身高、肩宽、三围等等,其中身高和肩宽是直线的长度,而三围是曲线的长度。如果把三围的曲线剪断并拉直,就能得到直线形式的三围;同理,把衣服这个三维的曲面剪开,然后把它摊平,得到平面形式的衣服。于是,剪开并摊平后的平面衣服,即可与原始的平面布匹对应起来了。因此,纹理坐标的目的就是标记被摊平衣服的二维坐标,从而将同属二维坐标系的布匹一块一块贴上去。 在OpenGL体系之中,纹理坐标又称UV坐标,通过两个浮点数组合来设置一个点的纹理坐标(U,V),其中U表示横轴,V表示纵轴。纹理坐标不关心物体的三维位置,好比一个人不管走到哪里,不管做什么动作,身上穿的还是那件衣服。纹理坐标所要表述的,是衣服的一小片一小片分别来自于哪块布料,也就是说,每一小片衣服各是由什么材质构成。既可以是棉布材质,也可以是丝绸材质,还可以是尼龙材质,纹理只是衣服的脉络,材质才是最终贴上去的花色。 给三维物体穿衣服的动作,通常叫做给三维图形贴图,更专业地说叫纹理渲染。渲染纹理的过程主要由三大项操作组成,分别说明如下: 一、启用纹理的一系列开关设置,该系列又包括下述步骤: 1、渲染纹理肯定要启用纹理功能了,并且为了能够正确渲染,还需同时启用深度测试。启用深度测试的目的,是只绘制物体朝向观测者的正面,而不绘制物体的背面。上一篇文章的立方体和球体因为没有开启深度测试,所以背面的线段也都画了出来。启用纹理与深度测试的代码示例如下:

03
您找到你想要的搜索结果了吗?
是的
没有找到

Shader经验分享

流水线 1.应用阶段:(CPU)输出渲染图元,粗粒度剔除等 比如完全不在相机范围内的需要剔除,文件系统的粒子系统实现就用到粗粒度剔除。 2.几何阶段:(GPU)把顶点坐标转换到屏幕空间,包含了模型空间 到世界空间 到观察空间(相机视角view) 到齐次裁剪空间(投影project2维空间,四维矩阵,通过-w<x<w判断是否在裁剪空间) 到归一化设备坐标NDC(四维矩阵通过齐次除法,齐次坐标的w除以xyz实现归一化) 到屏幕空间(通过屏幕宽高和归一化坐标计算)。 a.顶点着色器:坐标变换和逐顶点光照,将顶点空间转换到齐次裁剪空间。 b.曲面细分着色器:可选 c.几何着色器:可选 d.裁剪:通过齐次裁剪坐标的-w<x<w判断不在视野范围内的部分或者全部裁剪,归一化。 e.屏幕映射:把NDC坐标转换为屏幕坐标 3.光栅化阶段:(GPU)把几何阶段传来的数据来产生屏幕上的像素,计算每个图元覆盖了哪些像素,计算他们的颜色、 a.三角形设置:计算网格的三角形表达式 b.三角形遍历:检查每个像素是否被网格覆盖,被覆盖就生成一个片元。 c.片元着色器:对片元进行渲染操作 d.逐片元操作:模板测试,深度测试 混合等 e.屏幕图像 ------------------------------------------------------- 矩阵: M*A=A*M的转置(M是矩阵,A是向量,该公式不适合矩阵与矩阵) 坐标转换: o.pos = mul(UNITY_MATRIX_MVP, v.vertex);顶点位置模型空间到齐次空间 o.worldNormal = mul((float3x3)_Object2World,v.normal);//游戏中正常的法向量转换,转换后法向量可能不与原切线垂直,但是不影响游戏显示,而且大部分显示也是差不多的。一般用这个就行了。 o.worldNormal = mul(v.normal, (float3x3)_World2Object);顶点法向量从模型空间转换到世界空间的精确算法,公式是用_Object2World该矩阵的逆转置矩阵去转换法线。然后通过换算得到该行。 ------------------------------------------------------- API: UNITY_MATRIX_MVP 将顶点方向矢量从模型空间变换到裁剪空间 UNITY_MATRIX_MV 将顶点方向矢量从模型空间变换到观察空间 UNITY_MATRIX_V 将顶点方向矢量从世界空间变换到观察空间 UNITY_MATRIX_P 将顶点方向矢量从观察空间变换到裁剪空间 UNITY_MATRIX_VP 将顶点方向矢量从世界空间变换到裁剪空间 UNITY_MATRIX_T_MV UNITY_MATRIX_MV的转置矩阵 UNITY_MATRIX_IT_MV UNITY_MATRIX_MV的逆转置矩阵,用于将法线从模型空间转换到观察空间 _Object2World将顶点方向矢量从模型空间变换到世界空间,矩阵。 _World2Object将顶点方向矢量从世界空间变换到模型空间,矩阵。 模型空间到世界空间的矩阵简称M矩阵,世界空间到View空间的矩阵简称V矩阵,View到Project空间的矩阵简称P矩阵。 --------------------------------------------- _WorldSpaceCameraPos该摄像机在世界空间中的坐标 _ProjectionParams _ScreenParams _ZBufferParams unity_OrthoParams unity_Cameraprojection unity_CameraInvProjection unity_CameraWorldClipPlanes[6]摄像机在世界坐标下的6个裁剪面,分别是左右上下近远、 ---------------------------- 1.表面着色器 void surf (Input IN, inout SurfaceOutput o) {}表面着色器,unity特殊封装的着色器 Input IN:可以引用外部定义输入参数 inout SurfaceOutput o:输出参数 struct SurfaceOutput//普通光照 { half3 Albedo;//纹理,反射率,是漫反射的颜色值 half3 Normal;//法线坐标 half3 Emission;//自发光颜色 half Specular;//高光,镜面反射系数 half Gloss;//光泽度 half Alpha;//alpha通道 } 基于物理的光照模型:金属工作流Surfa

04
领券