首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在Pandas/Matplotlib上命名图例条目后的堆叠条形图

在数据分析和可视化中,堆叠条形图是一种常用的图表类型,用于展示不同类别在多个组中的分布情况。使用Pandas和Matplotlib库可以方便地创建这样的图表,并且可以通过命名图例条目来增强图表的可读性。

基础概念

堆叠条形图将每个类别的值堆叠起来,形成一个完整的条形。每个条形由多个部分组成,每个部分代表一个子类别的值。这种图表适合比较不同组中各个子类别的总和以及各子类别之间的相对大小。

优势

  1. 易于比较:可以直观地比较不同组中各个子类别的总和。
  2. 显示组成:能够清晰地展示每个组内各子类别的贡献。
  3. 节省空间:相比于多个单独的条形图,堆叠条形图在有限的空间内提供了更多的信息。

类型

  • 简单堆叠条形图:每个条形只有一层。
  • 多层堆叠条形图:每个条形有多层,每层代表不同的子类别。

应用场景

  • 市场分析:比较不同产品在各个地区的销售额。
  • 财务分析:展示公司收入的不同来源及其变化趋势。
  • 资源分配:分析不同部门在不同项目上的资源分配情况。

示例代码

以下是一个使用Pandas和Matplotlib创建堆叠条形图并命名图例条目的示例代码:

代码语言:txt
复制
import pandas as pd
import matplotlib.pyplot as plt

# 创建示例数据
data = {
    'Category': ['A', 'B', 'C'],
    'Subcategory1': [3, 2, 4],
    'Subcategory2': [1, 4, 2],
    'Subcategory3': [2, 3, 1]
}
df = pd.DataFrame(data)

# 设置Category为索引
df.set_index('Category', inplace=True)

# 绘制堆叠条形图
ax = df.plot(kind='bar', stacked=True, figsize=(10, 6))

# 添加图例
ax.legend(title='Subcategories')

# 设置标题和标签
ax.set_title('Stacked Bar Chart with Named Legend Entries')
ax.set_xlabel('Category')
ax.set_ylabel('Values')

# 显示图表
plt.show()

遇到的问题及解决方法

问题1:图例条目重叠

原因:图例条目过多或图表空间不足。 解决方法:调整图例的位置或大小,或者减少不必要的图例条目。

代码语言:txt
复制
ax.legend(title='Subcategories', bbox_to_anchor=(1.05, 1), loc='upper left')

问题2:条形颜色不明显

原因:颜色选择不当或对比度不足。 解决方法:使用对比度较高的颜色,或者根据数据特点选择合适的颜色方案。

代码语言:txt
复制
import matplotlib.colors as mcolors

# 自定义颜色
colors = [mcolors.CSS4_COLORS['lightblue'], mcolors.CSS4_COLORS['lightgreen'], mcolors.CSS4_COLORS['lightcoral']]
ax = df.plot(kind='bar', stacked=True, color=colors, figsize=(10, 6))

通过以上方法和示例代码,可以有效地创建和优化堆叠条形图,使其在数据分析和报告中发挥更大的作用。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

一文掌握Pandas可视化图表

,需要提前设置相关字体参数,参考此前推文《详解Matplotlib中文字符显示问题》 # 标题 df.plot.bar(title='标题',) 图例 通过参数legend可以设置图例,默认是显示图例的...当然,在使用新的引擎前需要先安装对应的库。...常见图表类型 在介绍完图表元素设置后,我们演示一下常见的几种图表类型。 柱状图 柱状图主要用于数据的对比,通过柱形的高低来表达数据的大小。...(figsize=(6,8)) 堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大...# 默认是堆叠 df.plot.area() 单个面积图 df.a.plot.area() 取消堆叠 # 取消堆叠 df.plot.area(stacked=False) 散点图 散点图就是将数据点展示在直角坐标系上

8.1K50

『数据可视化』一文掌握Pandas可视化图表

除了在绘图时定义图像大小外,我们还可以通过matplotlib的全局参数设置图像大小 plt.rcParams['figure.figsize'] = (10,5) 标题 通过参数title设置图表标题...图例 通过参数legend可以设置图例,默认是显示图例的,可以不显示或者显示的图例顺序倒序 # 图例不显示 df.plot.bar(legend=False) ?...绘图引擎 通过backend可以指定不同的绘图引擎,目前默认是matplotlib,还支持bokeh、plotly、Altair等等。当然,在使用新的引擎前需要先安装对应的库。...常见图表类型 在介绍完图表元素设置后,我们演示一下常见的几种图表类型。 柱状图 柱状图主要用于数据的对比,通过柱形的高低来表达数据的大小。...堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) ? 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大。

8.1K40
  • 原来使用 Pandas 绘制图表也这么惊艳

    Pandas 的 plot() 方法 Pandas 附带了一些绘图功能,底层都是基于 Matplotlib 库的,也就是说,由 Pandas 库创建的任何绘图都是 Matplotlib 对象。...事实上,Pandas 通过为我们自动化大部分数据可视化过程,使绘图变得像编写一行代码一样简单。 导入库和数据集 在今天的文章中,我们将研究 Facebook、微软和苹果股票的每周收盘价。...%matplotlib 内联魔法命令也被添加到代码中,以确保绘制的数字正确显示在笔记本单元格中: import pandas as pd import numpy as np import matplotlib.pyplot...默认情况下显示图例的图例,但是我们可以将 legend 参数设置为 false 来隐藏图例。 条形图 条形图是一种基本的可视化图表,用于比较数据组之间的值并用矩形条表示分类数据。...: df_3Months.plot(kind='barh', figsize=(9,6)) Output: 我们还可以在堆叠的垂直或水平条形图上绘制数据,这些条形图代表不同的组,结果条的高度显示了组的组合结果

    4.6K50

    Python 数据分析(PYDA)第三版(四)

    您可以在第十三章:数据分析示例中看到这些工具的各种应用用法。 8.1 层次索引 层次索引是 pandas 的一个重要特性,它使您能够在轴上具有多个(两个或更多)索引级别。...pandas 中的pandas.merge函数是使用这些算法在您的数据上的主要入口点。...使用 DataFrame,条形图将每行中的值分组在条形图中,侧边显示,每个值一个条形图。...我们通过传递stacked=True从 DataFrame 创建堆叠条形图,导致每行中的值水平堆叠在一起(参见 DataFrame 堆叠条形图): In [75]: df.plot.barh(stacked...对于为印刷品或网络创建静态图形,我建议使用 matplotlib 以及构建在 matplotlib 基础上的库,如 pandas 和 seaborn,以满足您的需求。

    31200

    python数据科学系列:matplotlib入门详细教程

    matplotlib,是matrix + plot + library的缩写,虽然命名很是直观,但个人接触之初却是常常不禁嗤之以鼻: 类比numpy、pandas、sklearn这些简洁易写的库名,matplotlib...当然,之所以不能称pyplot为一级命名空间的原因,不仅仅在于它在形式上隶属于matplotlib,最主要的在于它还不算是matplotlib的“独裁者”,因为matplotlib的另一个重要模块——pylab...legend,在图表中添加label图例参数后,通过legend进行显示 xlabel/ylabel,分别用于设置x、y轴标题 xticks/yticks,分别用于自定义坐标轴刻度显示 text/arrow...应用plt.GridSpec实现复杂多子图绘制 05 自定义配置 实际上,前述在配置图例过程中,每次绘制都需要进行大量自定义代码设置(这也是matplotlib的一个短板),在少量绘图工作时尚可接受,但在大量相似绘图存在重复操作时...为此,在matplotlib基础上产生了一些封装更为便捷的可视化库,实现更为简单易用的接口和美观的图表形式,包括: pandas.plot,一个最直接的对matplotlib绘图的封装,接口方法非常接近

    2.7K22

    比较(一)利用python绘制条形图

    比较(一)利用python绘制条形图 条形图(Barplot)简介 条形图主要用来比较不同类别间的数据差异,一条轴表示类别,另一条则表示对应的数值度量。...as plt import numpy as np import pandas as pd mpl.rcParams.update(mpl.rcParamsDefault) # 恢复默认的matplotlib...plt.xticks(r, names) plt.xlabel("group") plt.legend() plt.show() 通过pandas绘制多样化的条形图 pandas主要利用barh绘制条形图...pivot_df.plot.bar(grid=True) plt.show() 数量堆积条形图 import pandas as pd import matplotlib.pyplot as plt...=(1.04, 1),loc='upper left') plt.show() 总结 以上通过seaborn的barplot、matplotlib的bar和pandas的bar快速绘制条形图,并通过修改参数或者辅以其他绘图知识自定义各种各样的条形图来适应相关使用场景

    16610

    Bar Chart Race Matplotlib制作

    等人数到达一定数量后,我会构建学习交流群,大家共同进步 ? ? ) 效果预览 动态图表加上音乐总能给人不一样的感觉 ? ,下面就详细介绍此类动态图的matplotlib制作过程 01....抱着学习的目的,本期推文使用python可视化包matplotlib进行Bar Chart Race的绘制,这也是继上两篇动态图表教程后最后一篇matplotlib动态图表教程(毕竟原理都差不多,最多就是数据处理方法的不同...数据可视化 绘制此类可视化作品的静态图表较为简单,matplotlib的barh()方法即可绘制水平条形图(ps:为了更加接近于原始图表即条形图边角圆滑,但目前还没找到matplotlib的设置方法,...pandas官网教程。...总结 Bar Chart Race 图表的Matplotlib制作过程总体而言不难,此篇推文的可取之处有两点:python字典和列表表达式的灵活应用;Matplotlib多类别条形图图例的添加,希望这两点可以在大家的可视化绘制中有所帮助

    1.7K10

    数据可视化:认识Matplotlib

    数据经过NumPy和Pandas的计算,最终得到了我们想要的数据结论,但是这些数据结论并不直观,所以想要把数据分析的结论做到可视化,让任何其他人看起来毫无压力,那么Matplotlib将派上用场。...Matplotlib的官网地址为https://matplotlib.org/,这里有权威的官网资料,同样与numpy和pandas一样,文档是英文的表达,对读者有一定的能力要求。...fc:全写为facecolor,长条形的颜色 ec:全写为edgecolor,长条形边框的颜色 条形图 在之前的小节中得到了高分电影上映年份的TOP,现在我们就将此数据做成可视化的条形图。...,在简单意义上已经完成了一个简单的数据获取、分析以及可视化的过程。...: 横坐标(序列) height:纵坐标(系列) width:条形图的宽度,默认是0.8,可以根据实际大小设置,以更加美观 bottom:用于绘制堆叠条形图,默认值为None align:x轴刻度标签的对齐方式

    22120

    Matplotlib 中文用户指南 8.1 屏幕截图

    路径示例 你可以使用matplotlib.path模块,在maplotlib中添加任意路径: 源代码 mplot3d mplot3d 工具包(见 mplot3d 教程和 mplot3d 示例)支持简单的三维图形...椭圆 为了支持 Phoenix Mars Mission(使用 matplotlib 展示地面跟踪的航天器),Michael Droettboom 在 Charlie Moad 的工作基础上提供了非常精确的椭圆弧的...源代码 条形图 使用bar()命令创建条形图十分容易,其中包括一些定制(如误差条): 源代码 创建堆叠条(bar_stacked.py),蜡烛条(finance_demo.py)和水平条形图(barh_demo.py...以下示例模拟 ChartDirector 中的一个财务图: 源代码 地图示例 Jeff Whitaker 的 Basemap 附加工具包可以在许多不同的地图投影上绘制数据。...源代码 图例 legend()命令使用 MATLAB 兼容的图例布局命令自动生成图形图例。 源代码 感谢 Charles Twardy 编写了图例命令的输入。

    4.3K30

    又再肝3天,整理了65个Matplotlib案例,这能不收藏?

    2021-10-27 启用和检查交互模式 在 Matplotlib 中绘制折线图 绘制带有标签和图例的多条线的折线图 在 Matplotlib 中绘制带有标记的折线图 改变 Matplotlib 中绘制的图形的大小...更新 Matplotlib 折线图中的字体外观 用颜色名称绘制虚线和点状图 以随机坐标绘制所有可用标记 绘制一个非常简单的条形图 在 X 轴上绘制带有组数据的条形图 具有不同颜色条形的条形图 使用 Matplotlib...Matplotlib 创建方形气泡图 使用 Numpy 和 Matplotlib 创建具有气泡大小的图例 使用 Matplotlib 堆叠条形图 在同一图中绘制多个堆叠条 Matplotlib 中的水平堆积条形图...X 轴上绘制带有组数据的条形图 import pandas as pd import matplotlib.pyplot as plt df = pd.DataFrame([[1, 2, 3, 4]...堆叠条形图 import pandas as pd import numpy as np import matplotlib.pyplot as plt df = pd.DataFrame([[10

    2.5K10

    Pandas数据可视化

    pandas库是Python数据分析的核心库 它不仅可以加载和转换数据,还可以做更多的事情:它还可以可视化 pandas绘图API简单易用,是pandas流行的重要原因之一 Pandas 单变量可视化...,易于比较各组数据之间的差别 折线图: 易于比较各组数据之间的差别; 能比较多组数据在同一个维度上的趋势; 每张图上不适合展示太多折线  面积图就是在折线图的基础上,把折线下面的面积填充颜色 : 直方图...'] < 100].sample(100).plot.scatter(x='price', y='points’) 调整图形大小,字体大小,由于pandas的绘图功能是对Matplotlib绘图功能的封装...,所以很多参数pandas 和 matplotlib都一样 reviews[reviews['price'] 堆叠图(Stacked plots) 展示两个变量,除了使用散点图,也可以使用堆叠图 堆叠图是将一个变量绘制在另一个变量顶部的图表 接下来通过堆叠图来展示最常见的五种葡萄酒  从结果中看出,最受欢迎的葡萄酒是

    12610

    Python 数据可视化之山脊线图 Ridgeline Plots

    文章目录 一、前言 二、主要内容 三、总结 一、前言 JoyPy 是一个基于 matplotlib + pandas 的单功能 Python 包,它的唯一目的是绘制山脊线图 Joyplots(也称为 Ridgeline...在行为差异、特征工程和预测建模等场景中,了解不同组之间的变量分布差异非常有用。在这些情况下,许多数据科学家更喜欢在单一坐标轴上绘制组级分布图,例如直方图或密度图。...实际上,这主要涉及一些 matplotlib 绘图参数。用户还可以直接修改源代码,以调整 X 轴、Y 轴、标题和图例的字体大小,从而使生成的山脊线图更加美观。...空间效率:通过在单个图中堆叠,山脊线图可以有效地利用空间,避免了创建多个单独的密度图。 美观性:山脊线图在视觉上吸引人,用不同的颜色和样式区分不同的组,使得数据更加生动和直观。...使用 JoyPy,一个基于 matplotlib + pandas 的轻量级 Python 包,可以轻松绘制山脊线图 Joy Plot。 ️

    52300

    干货案例 | Pandas数据可视化怎么做?

    常见的数据可视化库有: matplotlib 是最常见的2维库,可以算作可视化的必备技能库,由于matplotlib是比较底层的库,api很多,代码学起来不太容易。...seaborn 是建构于matplotlib基础上,能满足绝大多数可视化需求。更特殊的需求还是需要学习matplotlib。...数据读取:pd.read_csv/pd.read_excel 数据清洗(预处理):理解pandas中的apply和map的作用和异同 可视化,兼容matplotlib语法(今天重点) 准备工作 如果你之前没有学过...pip3 install pandas !pip3 install matplotlib 已经安装好,现在我们导入这几个要用到的库。...legend 是否显示图例 style 图的风格 查看plot参数可以使用help import pandas as pd help(pd.DataFrame.plot) ?

    2.6K30

    绘制频率分布直方图的三种方法,总结的很用心!

    本次案例通过生成深圳市疫情个案数据集中所有患者的年龄参数直方图。 分别使用Matplotlib、Pandas、Seaborn模块可视化Histogram。...其中,Matplotlib和Pandas样式简单,看上去吸引力不大。Seaborn可往单变量直方图上添加很多东西,更美观,pandas可成组生成直方图。...导入库/数据 import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import datetime import...pandas也提供了一个方便的.value_counts() 方法,用来计算一个非空值的直方图,并将之转变成一个pandas的series结构:df.年龄.value_counts() Seaborn模块...15)、label:设置直方图的标签,可通过legend展示图例。 16)、stacked:当有多个数据时,是否需要将直方图呈堆叠摆放,默认水平摆放。

    36.6K42

    数据分析之Pandas快速图表可视化各类操作详解

    一、基础绘图:plot Series和DataFrame上的plot方法只是plt.plot()的简单包装,这里我们用一段实际数据来进行可视化展示: import pandas as pd import...1.条状图 df_flow_mark['客流量'].plot(kind='bar') df_flow_mark['客流量'].plot.bar() #二者皆可 多个标签图表也可以一齐绘出,要生成堆叠条形图...现有接口DataFrame.hist,但仍然可以使用hist绘制直方图 plt.figure() df_flow_mark['风级'].hist()  DataFrame.hist()可以在多个子地块上绘制列的直方图...默认情况下,面积图是堆叠的。要生成堆叠面积图,每列必须全部为正值或全部为负值。 当输入数据包含NaN时,它将自动由0填充。...可以创建宽度和高度相等的图形,或者在绘图后通过调用ax强制使纵横比相等。返回的axes对象上的ax.set_aspect('equal')。

    42541
    领券