execute env.execute(); } } 合并-拆分 union和connect API union: union算子可以合并多个同类型的数据流 ,并生成同类型的数据流,即可以将多个DataStream[T]合并为一个新的DataStream[T]。 connect: connect提供了和union类似的功能,用来连接两个数据流,它与union的区别在于: connect只能连接两个数据流,union可以连接多个数据流。 connect所连接的两个数据流的数据类型可以不一致,union所连接的两个数据流的数据类型必须一致。
3.ds.writeAsText("本地/HDFS的path",WriteMode.OVERWRITE).setParallelism(1)
移动推送、BI、云数仓Doris、ES、数据湖DLC、WeData、流计算Oceanus,多款产品助您高效挖掘数据潜力,提升数据生产力!
env.readTextFile(本地/HDFS文件/文件夹);//压缩文件也可以
Apache Flink 1.12 Documentation: JDBC Connector
通过flink 操作redis 其实我们可以通过传统的redis 连接池Jpoools 进行redis 的相关操作,但是flink 提供了专门操作redis 的...
Flink 里已经提供了一些绑定的 Connector,例如 kafka source 和 sink,Es sink 等。读写 kafka、es、rabbitM...
Flink使用HiveCatalog可以通过批或者流的方式来处理Hive中的表。 这就意味着Flink既可以作为Hive的一个批处理引擎,也可以通过流处理的方式来读写Hive中的表,从而为实时数仓的应用和流批一体的落地实践奠定了坚实的基础。 下面的示例是将kafka的数据流式写入Hive的分区表 -- 使用流处理模式 Flink SQL> set execution.type=streaming; -- 使用Hive方言 Flink SQL 在实际应用中,通常有将实时数据流与 Hive 维表 join 来构造宽表的需求,Flink提供了Hive维表JOIN,可以简化用户使用的复杂度。
这些都是处理有限数据流的经典方式。而Flink专注的是无限流处理,那么他是怎么做到批处理的呢? ? 这两个 API 都是批处理和流处理统一的 API,这意味着在无边界的实时数据流和有边界的历史记录数据流上,关系型 API 会以相同的语义执行查询,并产生相同的结果。 Table API / SQL 正在以流批统一的方式成为分析型用例的主要 API。 DataStream API 是数据驱动应用程序和数据管道的主要API。 相反,MapReduce、Tez 和 Spark 是基于批的,这意味着数据在通过网络传输之前必须先被写入磁盘。该测试说明,在使用Flink 时,系统空闲时间和磁盘访问操作更少。 因此,Flink 可以用同一个数据处理框架来处理无限数据流和有限数据流,并且不会牺牲性能。
❝每家数字化企业在目前遇到流批一体概念的时候,都会对这个概念抱有一些疑问,到底什么是流批一体?这个概念的来源?这个概念能为用户、开发人员以及企业带来什么样的好处?跟随着博主的理解和脑洞出发吧。 ❞ 前言 到底什么是流批一体? 批的来源?流的来源? 为什么要做流批一体? 从 数据开发的现状出发 探索理想中的流批一体能力支持 最终到数仓落地 go!!! ? ? ? ? ? ? ? n 年前的引擎能力(hive 等) 对文件、批量数据处理支持很友好 数据多是小时、天级别延迟 结论:批是在批式存储、处理引擎能力支持的角度提出的 ? ? 博主理解的流批一体更多的是站在平台能力支持的角度上 所以这里重点说明引擎 + 工具链上的期望 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
01 整体思考 提到流批一体,不得不提传统的大数据平台 —— Lambda 架构。 通过一套数据链路来同时满足流和批的数据处理需求是最理想的情况,即流批一体。此外我们认为流批一体还存在一些中间阶段,比如只实现计算的统一或者只实现存储的统一也是有重大意义的。 上图是京东实时计算平台的全景图,也是我们实现流批一体能力的载体。中间的 Flink 基于开源社区版本深度定制。 而在流批一体模式下,开发模式变为了首先完成 SQL 的开发,其中包括逻辑的、物理的 DDL 的定义,以及它们之间的字段映射关系的指定,DML 的编写等,然后分别指定流批任务相关的配置,最后发布成流批两个任务 3.1 案例一 实时通用数据层 RDDM 流批一体化的建设。
,随后将相同的计算逻辑分别在流和批系统中实现,并且在查询阶段合并流和批的计算视图并展示给用户。 图 1 Lambda架构示例 Lambda架构典型数据流程是(http://lambda-architecture.net/): 所有的数据需要分别写入批处理层和流处理层; 批处理层两个职责:(i)管理 流批融合的 Lambda 架构 针对 Lambda 架构的问题3,计算逻辑需要分别在流批框架中实现和运行的问题,不少计算引擎已经开始往流批统一的方向去发展,例如 Spark 和 Flink,从而简化lambda 图4 Kafka + Flink + ElasticSearch的混合分析系统 Lambda plus:Tablestore + Blink 流批一体处理框架 Lambda plus 是基于 Tablestore 表格存储支持用户 tp 系统低延迟读写更新,同时也提供了索引功能 ad-hoc 查询分析,数据利用率高,容量型表格存储实例也可以保证数据存储成本可控; 计算上,Lambda plus 利用 Blink 流批一体计算引擎
笔者基于对开源数据湖组件Hudi的研究和理解,思考在Iceberg、DeltaLake和Hudi等开源数据湖组件之上构建批流一体近实时数仓的可能性和思路。 02 近实时数仓数据流转过程 通过Hudi构建近实时数仓,数据流转过程如下: 1. 业务数据库Oracle、Mysql日志等或者埋点等数据进入消息队列Kafka。 2. 03 批流一体 按照上述思路建设的近实时数仓同时还实现了批流一体:批量任务和流任务存储统一(通过Hudi/Iceberg/DeltaLake等湖组件存储在HDFS上)、计算统一(Flink/Spark作业 )、开发统一(Flink/Spark)、业务逻辑统一(同一套逻辑分为批和流)。 业务需求使用同一套加工逻辑开发代码,按照加工时效的粒度分为批和流两类加工,在统一的数据来源上在同一套计算环境分别进行批量和流式数据加工,四方面的统一保证批任务和流任务的数据结果一致性。
摘要:本文介绍了某零售企业用户基于 Dlink + FlinkSQL 构建批流一体数据平台的实践,主要为部署的分享。 地址 https://github.com/DataLinkDC/dlink 欢迎大家关注 Dlink 的发展~ 一、前言 由于公司需求,最近调研了很多的开源项目,最终发现 Dlink 在建立批流一体的数据平台上更满足需求
架构优化升级 基于以上问题,我们在进行大量技术调研选型及POC之后,我们主要做了如下2部分大的架构优化升级。 从而实现流批一体架构而不是典型的Lambda架构。 hoodie.parquet.small.file.limit hoodie.merge.allow.duplicate.on.inserts 其中:hoodie.combine.before.insert 决定是否对同一批次的数据按 总结 我司基于Hudi实现流批一体数据湖架构上线生产环境已有半年多时间,在引入Hudi之后我们在以下各个方面都带来了一定收益: •成本: 引入Hudi数据湖方案之后,实现了S3数据增量查询和增量更新删除
流计算与批计算对比 数据时效性 流式计算实时、低延迟,流式计算适合以“t+0”的形式呈现业务数据; 批计算非实时、高延迟,批计算适合以“t+1”的形式呈现业务数据; 数据特征 流式计算数据一般是动态数据 ,数据是随时产生的; 批计算数据一般是静态数据,数据事先已经存储在各种介质中。 批计算应用在离线计算场景,如:数据分析、离线报表等。 运行方式 流式计算的任务是阻塞式的,一直持续运行中。 批计算的任务是一次性完成即结束。 etl-engine 实现流式计算 etl-engine 支持通过自身提供的 ”kafka消费节点“进行消息消费,并在消费数据流(消息流)的同时调用自身提供的“融合查询API”,实现将多种数据源的维表数据读取到内存中 ,然后将消息流与多个维表数据进行各种关联查询,最后输出融合查询结果集到目标源,常用在将多个维表数据与实时消息流关联后转换成一个大宽表的场景。
我们希望能够以简单的方式轻松整合现有企业数据源和高速/低延迟数据流。我们需要灵活地处理批处理 API 和流 API 以及无缝读取和写入它们的连接性。 SSB 一直能够加入多个数据流,但现在它也可以通过批处理源进行丰富。 数据定义语言 (DDL) 新功能的核心是将 Flink DDL 并入 SSB。 `icao` VARCHAR(255), `owner` VARCHAR(255) ) WITH ( ... ) 读取和丰富批处理数据 例如,我们在这里丰富了测量制造系统测试状态的数据流
- 随着大数据领域不断发展,企业对于业务场景的诉求也从离线的满足转到高实时性的要求,“t+0”形式呈现业务数据已是刚需。
许多的数据科学家,分析师和 BI 用户依赖交互式 SQL 查询分析数据。Flink SQL 是 Flink 的核心模块之一。作为一个分布式的 SQL 查询引擎。...
在降本增效的大背景下,我们针对结合计算引擎Flink与数据湖技术Iceberg建设流批一体实时湖仓做了较多的探索和实践,已经具备可落地可复制的经验。 在此基础上希望借助Kappa架构看待数据流批一体的视角去改进Lambda架构,寻找一个实现了Dataflow模型的计算引擎去统一处理批处理层和流处理层的数据计算。 流批一体实时湖仓建设实践在具体展开之前,从结果导向出发,先明确下我们期望流批一体最后实现的效果是什么。从大的方面来说,大数据技术要回答的两个问题是:(1)海量数据如何存储?(2)海量数据如何计算? 流批一体实时湖仓”。 我们得到这个结论之后,其实就引申出了一个在流式计算中非常重要的问题——数据流入计算引擎时是需要保序的。
腾讯云图 (TCV)是一站式数据可视化展示平台,旨在帮助用户快速通过可视化图表展示海量数据,10 分钟零门槛打造出专业大屏数据展示。精心预设多种行业模板,极致展示数据魅力。采用拖拽式自由布局,无需编码,全图形化编辑,快速可视化制作……
扫码关注腾讯云开发者
领取腾讯云代金券