首页
学习
活动
专区
圈层
工具
发布

偏度和峰度的计算

偏度(skewness)和峰度(kurtosis): 偏度能够反应分布的对称情况,右偏(也叫正偏),在图像上表现为数据右边脱了一个长长的尾巴,这时大多数值分布在左侧,有一小部分值分布在右侧。...偏度的定义: 样本X的偏度为样本的三阶标准矩 其中\mu是均值,\delta为标准差,E是均值操作。...\mu_3是三阶中心距,\kappa_t 是t^{th}累积量 偏度可以由三阶原点矩来进行表示: 样本偏度的计算方法: 一个容量为n的数据,一个典型的偏度计算方法如下: 其中\bar x为样本的均值...峰度的定义: 峰度定义为四阶标准矩,可以看出来和上面偏度的定义非常的像,只不过前者是三阶的。...()) print(s.kurt()) 它是用上面的G_1来计算偏度 G_2来计算峰度,结果如下: 0.7826325504212567 -0.2631655441038463 参考: 偏度和峰度如何影响您的分布

7K20

随机变量X的k阶(原点、中心)矩

二阶中心矩即方差,三阶中心矩即偏度,四阶中心矩即峰度。...二阶矩(方差): 二阶矩是随机变量与其均值之差的平方的期望值,表示分布的离散程度或波动性。它描述了随机变量的方差。 三阶矩(偏度): 偏度是三阶中心矩,用于衡量分布的对称性。...当偏度为正时,表示分布右偏;当偏度为负时,表示分布左偏。具体来说,三阶标准矩μ³用于计算偏度,其定义为σ³μ³,其中σ是标准差。...四阶矩(峰度): 峰度是四阶中心矩,用于衡量分布的尖锐程度和尾部厚度。峰度值大于3表示分布具有更高的尖峰和更厚的尾巴;峰度值小于3表示分布具有较低的尖峰和较薄的尾巴。...四阶标准矩μ⁴减去3用于计算峰度,其定义为σ⁴(μ⁴ - 3) 。 通过这些矩的计算和分析,可以全面了解随机变量的分布形态,包括其对称性和尖锐程度。

1.2K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    第一周:数据的描述性统计

    为样本算术平均值 分布的形态 偏态系数 偏态:统计数据峰值与平均值不相等的频率分布。根据峰值小于或大于平均值可分为正偏函数和负偏函数,其偏离的程度可用偏态系数刻画。...偏态 峰度系数 统计上是用四阶中心矩来测定峰度的。因为实验研究表明,偶阶中心矩的大小与图形分布的峰度有关。...其中的二阶中心矩就是数据的方差,它在一定程度上可以反映分布的峰度,但有时方差相同的数据却有不同的峰度,因此就利用四阶中心矩来反映分布的尖峭程度。...为了消除变量值水平和计量单位不同的影响,实际工作中是利用四阶中心矩与σ4的比值作为衡量峰度的指标,称为峰度系数。...但是在SPSS中的计算公式是四阶中心矩与σ4的比值减去3后的值,这个值与0相比,如果为0,说明其峰度与正态分布相同。大于0,说明它是比正态分布要陡峭。 ? 其中: ? 为实数, ?

    1.2K10

    机器学习数学笔记|偏度与峰度及其 python 实现

    矩 对于随机变量 X,X 的 K 阶原点矩为 X 的 K 阶中心矩为 期望实际上是随机变量 X 的 1 阶原点矩,方差实际上是随机变量 X 的 2 阶中心矩 变异系数(Coefficient of...Variation):标准差与均值(期望)的比值称为变异系数,记为 C.V 偏度 Skewness(三阶) 峰度 Kurtosis(四阶) 偏度与峰度 ?...利用 matplotlib 模拟偏度和峰度 计算期望和方差 import matplotlib.pyplot as plt import math import numpy as np def calc...我们直接利用 表示期望应当明确 (2)公式中 是利用中的伪随机数生成的其均值用于表示期望 此时(1)公式中对事件赋予的权值默认为 1,即公式的本来面目为 计算偏度和峰度 def calc_stat...kurt=niu4/(sigma**4) # 峰度计算公式:下方为方差的平方即为标准差的四次方 return [niu, sigma,skew,kurt] 利用 matplotlib

    1.5K40

    数据的描述性统计与python实现

    加权平均值的大小不仅取决于总体中各单位的数值(变量值)的大小,而且取决于各数值出现的次数(频数),由于各数值出现的次数对其在平均数中的影响起着权衡轻重的作用,因此叫做权数 几何平均数:几何平均数是对各变量值的连乘积开项数次方根...以平均值与中位数之差对标准差之比率来衡量偏斜的程度:  用SK表示偏斜系数:正态分布左右是对称的,偏度系数为0,偏态系数小于0,因为平均数在众数之左,是一种左偏的分布,又称为负偏。...偏态系数大于0,因为均值在众数之右,是一种右偏的分布,又称为正偏  峰态系数:用来度量数据在中心聚集程度,四阶中心矩与σ4的比值作为衡量峰度的指标:  在正态分布情况下,峰度系数值是3,>3的峰度系数说明观察量更集中...,有比正态分布更短的尾部;的峰度系数说明观测量不那么集中,有比正态分布更长的尾部,类似于矩形的均匀分布,峰度系数的标准误用来判断分布的正态性。...print('偏度:',snd.height.skew()) print('峰度:',snd.height.kurt()) 偏度: -0.2619058504933375 峰度: -0.26616749245337346

    95220

    机器学习数学基础:数理统计与描述性统计

    大纲如下: 数理统计的基础(基础概念, 统计量与抽样分布, 常用统计量) 描述性统计(数据集中趋势和离散趋势, 分布特征, 偏度与峰度) ?...偏度与峰度 偏度(skewness):也称为偏态,是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。直观看来就是密度函数曲线尾部的相对长度。偏度刻画的是分布函数(数据)的对称性。...关于均值对称的数据其偏度系数为0,右侧更分散的数据偏度系数为正,左侧更分散的数据偏度系数为负。样本偏度系数如下: 正态分布的偏度为0, 两侧尾部长度对称。 左偏 ? 右偏 ?...峰度(peakedness;kurtosis): 说明的是分布曲线在平均值处峰值高低的特征数。直观看来,峰度反映了峰部的尖度。...最后是描述性统计这块,介绍了数据集中趋势度量, 这里面包括平均数,中位数, 众数, 频数,百分位数等并给出了numpy实现, 然后是离散趋势度量, 方差, 标准差, 极差,四分位点的内容, 然后是峰度和偏度的介绍

    2.5K20

    机器学习数学基础:数理统计与描述性统计

    大纲如下: 数理统计的基础(基础概念, 统计量与抽样分布, 常用统计量) 描述性统计(数据集中趋势和离散趋势, 分布特征, 偏度与峰度) ?...偏度与峰度 偏度(skewness):也称为偏态,是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。直观看来就是密度函数曲线尾部的相对长度。偏度刻画的是分布函数(数据)的对称性。...关于均值对称的数据其偏度系数为0,右侧更分散的数据偏度系数为正,左侧更分散的数据偏度系数为负。样本偏度系数如下: 正态分布的偏度为0, 两侧尾部长度对称。 左偏 ? 右偏 ?...峰度(peakedness;kurtosis): 说明的是分布曲线在平均值处峰值高低的特征数。直观看来,峰度反映了峰部的尖度。...最后是描述性统计这块,介绍了数据集中趋势度量, 这里面包括平均数,中位数, 众数, 频数,百分位数等并给出了numpy实现, 然后是离散趋势度量, 方差, 标准差, 极差,四分位点的内容, 然后是峰度和偏度的介绍

    1.9K20

    《python数据分析与挖掘实战》笔记第3章

    skew() 样本值的偏度(三阶矩) Pandas kurt() 样本值的峰度(四阶矩) Pandas describe() 给出样本的基本描述(基本统计量如均值、标准差等) Pandas corr...print(result) skew/kurt 功能:计算数据样本的偏度(三阶矩)/峰度(四阶矩)。...使用格式:D.skew() / D.kurt() 计算样本D的偏度(三阶矩)/峰度(四阶矩)。样本D可为DataFrame或Series。 实例:计算6x5随机矩阵的偏度(三阶矩)/峰度(四阶矩)。...代码清单3-7,计算6x5随机矩阵的偏度(三阶矩)/峰度(四阶矩) # -*- coding:utf-8 -*- # 计算6x5随机矩阵的偏度(三阶矩)/峰度(四阶矩) import pandas as...Pandas rolling_skew() 样本值的偏度(三阶矩) Pandas rolling_kurt() 样本值的峰度(四阶矩) Pandas 其中,cum系列函数是作为DataFrame或’

    2.7K20

    偏度(skewness)和峰度(kurtosis)

    偏度 偏度(skewness),是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。定义上偏度是样本的三阶标准化矩。...偏度定义中包括正态分布(偏度=0),右偏分布(也叫正偏分布,其偏度>0),左偏分布(也叫负偏分布,其偏度<0)。...Python代码实现方法: pandas的Series 数据结构可以直接调用skew()方法来查看 df.iloc[:,1].skew() Jetbrains全家桶1年46,售后保障稳定 峰度 峰度...表征概率密度分布曲线在平均值处峰值高低的特征数。直观看来,峰度反映了峰部的尖度。随机变量的峰度计算方法为:随机变量的四阶中心矩与方差平方的比值。...峰度包括正态分布(峰度值=3),厚尾(峰度值>3),瘦尾(峰度值峰度值减3,ArcGIS默认正态分布的峰度为3。MS Excel的计算公式与上面略有不同。

    1.5K20

    R语言入门之偏度(skewness)与峰度(kurtosis)

    偏度(Skewness)与 峰度(Kurtosis) 第一部分:偏度(Skewness) 偏度(skewness),是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。...在定义上,偏度是样本的三阶标准化矩: ? 偏度定义中包括右偏分布(也叫正偏分布,其偏度>0),正态分布(偏度=0),左偏分布(也叫负偏分布,其偏度<0),如下图所示: ? ? ?...第二部分:峰度(Kurtosis) 峰度(kurtosis),表征概率密度分布曲线在平均值处峰值高低的特征数。直观看来,峰度反映了峰部的尖度,计算方法为随机变量的四阶中心矩与方差平方的比值。...公式上就是把偏度计算公式里的幂次改为4即可。峰度包括正态分布(峰度值=3),厚尾(峰度值>3),瘦尾(峰度值的内容就分享到这里了,如果对偏度和峰度仍有不理解的朋友欢迎在后台留言!

    16.2K30

    机器学习概率基础:除了偏度、峰度还有矩量母函数

    方差的平方根称为标准差,用 表示, 通常,方差和标准差分别用 和 表示。 +偏度、峰度和矩 除了期望和方差之外,还经常使用诸如偏度(Skewness)和峰度(Kurtosis)之类的高阶统计量。...偏度和峰度分别表示概率分布的不对称性和尖锐度,它们分别定义为 分母中的 和 用于规范化处理,峰度定义中包含的 将正态分布的峰度归零。...如上图所示,如果偏度为正,则右侧尾比左侧尾要长;如果偏度为负,则左侧尾比右侧尾长。如果偏度为零,则分布是完全对称的。...期望值、方差、偏度和峰度可通过使用 统一表示, 期望值:, 方差: 偏度: 峰度: 5矩量母函数 如果指定了期望、方差、偏度和峰度,那么概率分布在一定程度上就被确定下来了。...但是,如果我们该如何用更多的特征来描述分布呢? 其实,像平均值、方差、偏度和峰度这些特征统一被称为矩,那么有没有一个函数能够计算所有矩呢?

    1.3K21

    集中趋势中均值、中位数、众数以及偏态分布、偏度和峰度计算相关

    3.2 偏态分布 偏态分布为统计学概念,即统计数据峰值与平均值不相等的频率分布。根据峰值小于或大于平均值可分为正偏函数和负偏函数,其偏离的程度可用偏态系数刻画....用众数描述 众数位置哪边尾巴长,就是往哪边偏。 数据分布往哪边偏,均值被拉往哪边 偏度本身是相对于均值左右数据的多少。...3.3 偏度计算 3.3 峰度 peakedness;kurtosis)又称峰态系数。表征概率密度分布曲线在平均值处峰值高低的特征数。直观看来,峰度反映了峰部的尖度。...计算: 峰度定义为四阶标准矩,可以看出来和上面偏度的定义非常的像,只不过前者是三阶的。...正态分布”所有需要的知识点 – 知乎 (zhihu.com) 5 偏度和峰度的计算 – 小舔哥 – 博客园 (cnblogs.com) 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。

    2K30

    随机变量的数学期望

    以下是一些具体的例子和应用: 医疗领域:在疾病普查中,通过计算平均值来预测疾病的分布情况,从而制定更有效的公共卫生策略。...此外,它们的线性组合仍然服从高斯分布。 3. 具体例子 假设 X 和 Y 是两个独立的正态分布随机变量,其均值分别为 μX​ 和 μY​,标准差分别为 σX​ 和 σY​。...原点矩是指随机变量的某次幂的数学期望,例如一阶原点矩就是数学期望,即均值。二阶原点矩是方差,三阶原点矩是偏度,四阶原点矩是峰度等。...中心矩则是从原点矩中减去其均值后的结果,例如二阶中心矩就是方差。 通过这些矩,我们可以更深入地了解随机变量的分布特性。...例如,方差可以用来衡量数据的离散程度,而协方差则用于衡量两个随机变量之间的相关性。此外,高阶矩还可以帮助我们理解数据的形态特征,如偏度和峰度等。

    64910

    损失函数是学习的指挥棒—记一次实践经历

    目录 写在前面 PCA投影 基于偏度与峰度 构建损失函数 小结 参考 写在前面 损失函数是学习的指挥棒。 前段时间有个活,让我对定义损失函数有了新的认识,遂记录一下。...基于偏度与峰度 构建损失函数 如果采用学习的方法,待学习的参数很好定义,1个D维的投影向量,关键是如何构建损失函数。...在概率统计中,有两个指标,偏度(Skewness)和峰度(Kurtosis), 偏度(Skewness),用于衡量随机变量相对于平均值的对称程度,计算方式为随机变量的三阶标准中心矩,如下, \[\...峰度(Kurtosis),用于衡量随机变量分布的集中程度,计算方式为随机变量的四阶标准中心矩,如下, \[\operatorname{Kurt}[X]=\mathrm{E}\left[\left(\...偏度(Skewness)和峰度(Kurtosis)都无量纲,在这个问题中,恰好可以用它们来构建损失函数,同时考虑方差,将损失定义如下,令 ||p|| = 1 ,移除投影向量模对方差的影响, \[L =

    87520

    机器学习基础 - 偏度、正态化以及 Box-Cox 变换

    这些现象如何用数字量化呢?偏度(skewness)和峰度(Kurtosis)就是两个常见的统计量,本篇主要处理前者。如下图所示,红色表示正态分布,黑色表示不同偏度,绿色和蓝色表示正负峰度。 ?....定义 随机变量 的偏度 为三阶标准矩,定义为 其中 是三阶中心矩, 是标准差, 是期望。....样本偏度 具有 个值的样本的样本偏度为, 其中 是样本平均值, 是三阶样本中心矩, 是二阶样本中心距,即样本方差。如果考虑无偏估计,则在上式中把除以 改为除以 。...上图分别为负偏度(左)和正偏度(右)的情况,注意平均值(mean)、中位数(median)和众数(mode)的位置。例如,对于右偏度,由于有较大的极值存在,所以拉高了平均值。...从这个角度出发,我们可以定义如下皮尔逊(Pearson)第一偏度系数, 偏度众数均值标准差 可以用中位数和均值来近似计算众数,即 这就是说所谓的皮尔逊第二偏度系数, 3偏度分级 分布的偏度计算出来以后

    6K63

    概率统计学习之参数估计与假设检验

    当n为5左右时,均值0.95置信水平下的置信区间约为均值加减一个标准差,这也是做图中通常使用1个标准差做误差棒(error bar)的原因。...⑵偏度/峰度检验 偏度/峰度检验法是检验样本是否来自正态分布总体,随机变量X的偏度和峰度是指u转换统计量 的三阶矩和四阶矩: 若X服从正态分布,那么肯定有ν1=0,ν2=3。...如果Bk为样本x1, x2,...xn的k阶中心矩,那么样本的偏度与峰度为: 假如X服从正态分布为真,而且n充分大,则有: 记: 那么如果假设为真,且样本容量n充分大,则有: 如果假设为真...,那么样本与总体的偏度和峰度相差不会很大,也即G1与G2收敛于ν1和ν2。...使用偏度/峰度检验法时样本量以大于100为宜。 ⑶秩和检验 秩和检验法是一种简单、有效的检验方法,主要判断两个总体的样本之间差异而不需要很大的样本容量。

    1.2K20

    【R系列】概率基础和R语言

    随机变量的数字特征 · 数学期望 · 方差 · 标准差 · 各种分步的期望和方差 · 常用统计量(最大,最小,中位数,四分位数) · 协方差 · 相关系数 · 矩(原点矩,中心矩,偏度,峰度) · 协方差矩阵...R程序:计算S(1,2,3,4,5)的二阶中心矩(方差) > S<-c(1,2,3,4,5) > var(S) [1] 2.5 距是广泛应用的一类数学特征,均值和方差分别就是一阶原点矩和二阶中心矩。...偏度(skewness): 是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。...设分布函数F(x)有中心矩u2=E(X −E(X))^2, u3 = E(X −E(X))^3,则Cs=u3/u2^(3/2)为偏度系数。 ?...R语言:计算10000个正态分布的样本的峰度,(同偏度的样本数据) > library(PerformanceAnalytics) > kurtosis(S) [1] -0.02443549 > hist

    2.4K80

    利用python回顾统计学中的基础概念(全)

    描述性统计,就是从总体数据中提取变量的主要信息(总和、均值等),从而从总体层面上,对数据进行统计性描述。 在统计的过程中,通常会配合绘制相关的统计图来进行辅助。...+ 标准差 * 分布形状 + 偏度 + 峰度 2)变量的类型 * 类别变量 + 无序类别变量 + 有序类别变量 * 数值变量 + 连续变量 + 离散型变量...计算均值的时候,因此容易受到极端值的影响。中位数与众数的计算不受极端值的影响,因此会相对稳定。 众数在一组数据中可能不是唯一的。但是均值和中位数都是唯一的。 在正态分布下,三者是相同的。...7、分布形状:偏度和峰度 1)偏度 ① 概念 偏度是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。 如果数据对称分布(例如正态分布),则偏度为0。...如果数据左偏分布,则偏度小于0,如果数据右偏分布,则偏度大于0。 ?

    1.2K11

    统计学中基础概念说明

    ) 6、离散程度 1)极差、方差、标准差的概念 2)极差、方差、标准差的作用 3)代码:计算鸢尾花数据集中花萼长度的极差、方差、标准差 7、分布形状:偏度和峰度 1)偏度 2)峰度 1、什么是描述性统计...+ 标准差 * 分布形状 + 偏度 + 峰度 2)变量的类型 * 类别变量 + 无序类别变量 + 有序类别变量 * 数值变量 + 连续变量 + 离散型变量...中位数与众数的计算不受极端值的影响,因此会相对稳定。 众数在一组数据中可能不是唯一的。但是均值和中位数都是唯一的。 在正态分布下,三者是相同的。在偏态分布下,三者会所有不同。...、分布形状:偏度和峰度 1)偏度 ① 概念 偏度是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。...如果数据对称分布(例如正态分布),则偏度为0。 如果数据左偏分布,则偏度小于0,如果数据右偏分布,则偏度大于0。

    1.1K30
    领券