首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

AI识别工人安全绳佩戴检测算法

AI识别工人安全绳佩戴检测算法基于CNN的目标检测是通过CNN 作为特征提取器对现场图像进行处理和分析,AI识别工人安全绳佩戴检测算法识别出工人是否佩戴安全绳,一旦发现工人未佩戴安全绳,AI识别工人安全绳佩戴检测算法将立即进行告警,并将事件记录下来。并对得到的图像的带有位置属性的特征进行判断,从而产出一个能够圈定出特定目标或者物体(Object)的限定框(Bounding-box,下面简写为bbox)。AI识别工人安全绳佩戴检测算法和low-level任务不同,目标检测需要预测物体类别及其覆盖的范围,因此需关注高阶语义信息。传统的非CNN 的方法也可以实现这个任务,比如Selective Search 或者DPM。在初始的CNN 中,也采用了传统方法生成备选框。

00

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

现有的深度卷积神经网络(CNNs)需要一个固定大小的输入图像(如224×224)。这一要求是“人为的”,可能会降低对任意大小/尺度的图像或子图像的识别精度。在这项工作中,我们为网络配备了另一种池化策略,“空间金字塔池”,以消除上述要求。这种新的网络结构称为SPP-net,可以生成固定长度的表示,而不受图像大小/比例的影响。金字塔池对物体变形也有很强的鲁棒性。基于这些优点,SPP-net一般应改进所有基于cnn的图像分类方法。在ImageNet 2012数据集中,我们证明了SPP-net提高了各种CNN架构的准确性,尽管它们的设计不同。在Pascal VOC 2007和Caltech101数据集中,SPP-net实现了最先进的分类结果使用单一的全图像表示和没有微调。在目标检测中,spp网络的能力也很重要。利用SPP-net算法,只对整个图像进行一次特征映射计算,然后将特征集合到任意区域(子图像),生成固定长度的表示形式,用于训练检测器。该方法避免了卷积特征的重复计算。在处理测试图像时,我们的方法比R-CNN方法快24-102×,而在Pascal VOC 2007上达到了更好或相近的精度。在2014年的ImageNet Large Scale Visual Recognition Challenge (ILSVRC)中,我们的方法在所有38个团队中目标检测排名第二,图像分类排名第三。本文还介绍了本次比赛的改进情况。

02

Rich feature hierarchies for accurate object detection and semantic segmentation

在PASCAL VOC标准数据集上测量的目标检测性能在最近几年趋于稳定。性能最好的方法是复杂的集成系统,它通常将多个低层图像特性与高层上下文结合起来。在本文中,我们提出了一种简单、可扩展的检测算法,相对于之前VOC 2012的最佳检测结果,平均平均精度(mAP)提高了30%以上,达到了53.3%。我们的方法结合了两个关键的方法:(1)为了定位和分割目标,可以一次将高容量应用卷积神经网络(cnn)自下而上的区域建议(2)标记的训练数据稀缺时,监督为辅助训练的任务,其次是特定于域的微调,收益率显著的性能提升。由于我们将区域建议与CNNs相结合,我们将我们的方法称为R-CNN:具有CNN特性的区域。我们还将R-CNN与OverFeat进行了比较,OverFeat是最近提出的一种基于类似CNN架构的滑动窗口检测器。在200类ILSVRC2013检测数据集上,我们发现R-CNN比OverFeat有较大的优势。

02

object detection中的非极大值抑制(NMS)算法

前言 什么是NMS算法呢?即非极大值抑制,它在目标检测、目标追踪、三维重建等方面应用十分广泛,特别是在目标检测方面,它是目标检测的最后一道关口,不管是RCNN、还是fast-RCNN、YOLO等算法,都使用了这一项算法。 一、概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小。这里不讨论通用的NMS算法(参考论文《Efficient Non-Maximum Suppression》对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的。例如在行人检测中,滑动窗口经提取特征,经分类器分类识别后,每个窗口都会得到一个分数。但是滑动窗口会导致很多窗口与其他窗口存在包含或者大部分交叉的情况。这时就需要用到NMS来选取那些邻域里分数最高(是行人的概率最大),并且抑制那些分数低的窗口。 NMS在计算机视觉领域有着非常重要的应用,如视频目标跟踪、数据挖掘、3D重建、目标识别以及纹理分析等。本文主要以目标检测中的应用加以说明。

05

深度学习知识抽取:属性词、品牌词、物品词

更具体的任务有,在解析一段工作经历长文本的时候,我们希望提取其中的动宾组合来表示该应聘者之于此段工作经历的主要工作内容。以“ 了解市场情况 , 进行一些项目的商务谈判 ”为例,HanLP分词器的结果为“ 了解市场情况 , 进行一些项目的商务谈判 ”,此时可以提取的粗动宾组合有“了解- 情况 ”和“ 进行 - 谈判 ”,而我们更希望得到更加完整且意义更加丰富的宾语,因此需要将“市场 情况”合并为“市场情况”,将“商务 谈判”合并为“商务谈判”。因此,我们需要一个能够准确提取名词短语(Noun Pharse)的序列标注模型来克服NP字典召回不足的问题。

02

扫码

添加站长 进交流群

领取专属 10元无门槛券

手把手带您无忧上云

扫码加入开发者社群

相关资讯

热门标签

活动推荐

    运营活动

    活动名称
    广告关闭
    领券