首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何从numpy数组中删除两个最小的数字并计算中间数python 3

在Python 3中,可以使用NumPy库来处理数组操作。要从NumPy数组中删除两个最小的数字并计算中间数,可以按照以下步骤进行:

  1. 导入NumPy库:
代码语言:txt
复制
import numpy as np
  1. 创建一个NumPy数组:
代码语言:txt
复制
arr = np.array([5, 2, 8, 1, 9, 3])
  1. 使用NumPy的argsort()函数对数组进行排序,并获取排序后的索引:
代码语言:txt
复制
sorted_indices = np.argsort(arr)
  1. 使用切片操作获取除了最小的两个数字之外的所有元素:
代码语言:txt
复制
new_arr = arr[sorted_indices[2:]]
  1. 计算中间数:
代码语言:txt
复制
middle_num = np.median(new_arr)

完整的代码如下:

代码语言:txt
复制
import numpy as np

arr = np.array([5, 2, 8, 1, 9, 3])
sorted_indices = np.argsort(arr)
new_arr = arr[sorted_indices[2:]]
middle_num = np.median(new_arr)

print("中间数:", middle_num)

这段代码的输出将会是:

代码语言:txt
复制
中间数: 5.0

关于NumPy的更多信息和使用方法,可以参考腾讯云的相关产品和文档:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

70个NumPy练习:在Python下一举搞定机器学习矩阵运算

难度:1 问题:创建一个含有从0到9数字的一维数组,并输出 答案: 3.如何创建布尔数组? 难度:1 问题:创建一个3×3的所有值为True的numpy数组。...输入: 输出: 答案: 12.从一个数组中删除存在于另一个数组中的元素? 难度:2 问题:从数组a中删除在数组b中存在的所有元素。 输入: 输出: 答案: 13.获取两个数组元素匹配的索引号。...难度:1 问题:打印完整的numpy数组a,且不截断。 输入: 输出: 答案: 25.如何在python numpy中导入含有数字和文本的数据集,并保持的文本完整性?...输入: 输出: 答案: 56.如何找到numpy二维数组每一行中的最大值? 难度:2 问题:计算给定数组中每一行的最大值。 答案: 57.如何计算numpy二维数组每行中的最小值?...难度:2 问题:从一维numpy数组中删除所有nan值 输入: 输出: 答案: 62.如何计算两个数组之间的欧氏距离? 难度:3 问题:计算两个数组a和b之间的欧式距离。

20.7K42

Python 最常见的 120 道面试题解析

Python 中的自我是什么? 如何中断,继续并通过工作? [:: - 1} 做什么? 如何在 Python 中随机化列表中的项目? 什么是 python 迭代器?...什么是 python 的内置类型? NumPy 阵列在(嵌套)Python 列表中提供了哪些优势? 如何将值添加到 python 数组? 如何删除 python 数组的值?...数据分析 - Python 面试问题 什么是 Python 中的 map 函数? python numpy 比列表更好吗? 如何在 NumPy 数组中获得 N 个最大值的索引?...你如何用 Python / NumPy 计算百分位数? NumPy 和 SciPy 有什么区别? 如何使用 NumPy / SciPy 制作 3D 绘图/可视化?...检查给定数字n是否为2或0的幂 计算将A转换为B所需的位数 在重复元素数组中查找两个非重复元素 找到具有相同设置位数的下一个较大和下一个较小的数字 95.给定n个项目的重量和值,将这些物品放入容量为W的背包中

6.3K20
  • Python可视化数据分析04、NumPy库使用

    NumPy字符串的函数的说明见下表: 函数 描述 add() 对两个数组的逐个字符串元素进行连接 multiply() 返回按元素多重连接后的字符串 center() 居中字符串,并使用指定字符在左侧和右侧进行填充...默认编码是utf-8,可以使用标准Python库中的编解码器 decode() 对编码的元素进行str.decode()解码 import numpy as np print('连接两个字符串:')...power()函数:将第一个输入数组中的元素作为底数,计算它与第二个输入数组中相应元素的幂。...mod()函数:计算输入数组中相应元素的相除后的余数 统计函数 amin()函数:用于计算数组中的元素沿指定轴的最小值。 amax()函数:用于计算数组中的元素沿指定轴的最大值。...ptp()函数:计算数组中元素最大值与最小值的差(最大值-最小值)。 median()函数:用于计算数组中元素的中位数(中值)。 mean()函数:返回数组中元素的算术平均值。

    1.5K40

    NumPy 笔记(超级全!收藏√)

    ,A为任意方向(默认)subok默认返回一个与基类类型一致的数组ndmin指定生成数组的最小维度 ndarray 对象由计算机内存的连续一维部分组成,并结合索引模式,将每个元素映射到内存块中的一个位置。...  numpy.delete  numpy.delete 函数返回从输入数组中删除指定子数组的新数组。...NumPy 统计函数  NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等。...numpy.amax() 用于计算数组中的元素沿指定轴的最大值。  numpy.ptp()  numpy.ptp()函数计算数组中元素最大值与最小值的差(最大值 - 最小值)。 ...() 对于两个一维的数组,计算的是这两个数组对应下标元素的乘积和(数学上称之为内积);对于二维数组,计算的是两个数组的矩阵乘积;对于多维数组,它的通用计算公式如下,即结果数组中的每个元素都是:数组a的最后一维上的所有元素与数组

    4.6K30

    Python:Numpy详解

    numpy.fromiter(iterable, dtype, count=-1) NumPy 从数值范围创建数组  numpy.arange numpy 包中的使用 arange 函数创建数值范围并返回...  numpy.delete numpy.delete 函数返回从输入数组中删除指定子数组的新数组。...NumPy 统计函数  numpy.amin() 和 numpy.amax() numpy.amin() 用于计算数组中的元素沿指定轴的最小值。 ...numpy.amax() 用于计算数组中的元素沿指定轴的最大值。  numpy.ptp() numpy.ptp()函数计算数组中元素最大值与最小值的差(最大值 - 最小值)。 ...NumPy 线性代数  numpy.dot() numpy.dot() 对于两个一维的数组,计算的是这两个数组对应下标元素的乘积和(数学上称之为内积);对于二维数组,计算的是两个数组的矩阵乘积;对于多维数组

    3.6K00

    手把手带你开启机器学习之路——房价预测(一)

    使用中位数填充缺失值的代码如下: 删除缺失的行,可以使用pandas中的dropna()方法 删除该列,可以使用pandas中的drop()方法 用平均值或中位数填充该值,可以使用pandas中的fillna...使用中位数填充缺失值的代码如下: ? 由于中位数只能针对数值型属性计算,我们需要先创建一个只有数值型属性的数据副本。 ? imputer计算好的缺失值存储在imputer.statistics中。...但第一种方法首先得到一个scipy的稀疏矩阵,仅存储非0元素的位置,但仍然可以像使用二维数组来使用它。在调用toarray才能得到numpy的数组。第二种方法是直接得到最终的结果。更快捷。...但当特征很多的时候,numpy数组的存储会比较占空间。 特征缩放 为了消除数据中量纲的影响,通常有两种方式对数据进行缩放:最大最小缩放和标准化。在scikitlearn中都提供了相应的方法。...最大最小缩放是将值减去最小值并除以最大值和最小值的差,将值最终归于0-1之间。标准化缩放则是首先减去平均值然后除以方差,最终范围不一定是0-1之间。 ?

    2.2K30

    Python3快速入门(十二)——Num

    ndarray 和 标准Python 数组的区别如下: (1)ndarray 在创建时具有固定的大小, 更改ndarray的大小将创建一个新数组并删除原来的数组,与Python的原生数组对象(可以动态增长...为了高效地使用当今基于Python的科学计算工具,需要知道如何使用NumPy数组。...a : ndarray 数组 b : ndarray 数组 out : ndarray, 可选,用来保存dot()的计算结果  对于两个一维的数组,计算两个数组对应下标元素的乘积和(数学上称为内积);对于二维数组...,计算两个数组的矩阵乘积;对于多维数组,通用计算公式如下,即结果数组中的每个元素都是:数组a的最后一维上的所有元素与数组b的倒数第二位上的所有元素的乘积和。...行列式在线性代数中是非常有用的值,从方阵的对角元素计算。 对于 2×2 矩阵,是左上和右下元素的乘积与其他两个的乘积的差。 对于矩阵[[a,b],[c,d]],行列式计算为 ad-bc。

    4.7K20

    利用NumPy和Pandas进行机器学习数据处理与分析

    Numpy介绍在进行科学计算和数据分析时,处理大量数据和进行高效的数值计算是不可或缺的。为了满足这些需求,Python语言提供了一个被广泛使用的库——Numpy。...Numpy的索引从0开始,可以使用整数、切片或布尔数组作为索引,例如print(arr[0]) # 输出第一个元素print(arr[1:3]) # 输出第二个和第三个元素print(arr[arr...当两个数组的形状不同时,Numpy会自动调整数组的形状,使它们能够进行元素级别的运算a = np.array([[1, 2, 3], [4, 5, 6]])b = np.array([1, 2, 3])...例如,可以计算数组的和、平均值、最大值、最小值等a = np.array([1, 2, 3, 4, 5])print(np.sum(a)) # 计算数组元素的和print(np.mean(a)) #...计算数组元素的平均值print(np.max(a)) # 计算数组元素的最大值print(np.min(a)) # 计算数组元素的最小值运行结果如下Pandas介绍在机器学习领域,数据处理是非常重要的一环

    28120

    如何在Python和numpy中生成随机数

    此函数有两个参数:生成的整数值的范围的开始和结束。生成的随机整数值的开始和结束范围内,包括范围值的开始和结束,即在区间[start,end]中。随机值从均匀分布抽取。...使用sample()函数可以完成此功能,这个函数从列表中选择随机样本而不进行替换。该函数需要的参数有列表和子集大小。请注意,这些选过的项实际上并未从原始列表中删除,只是被挑进了列表的副本。...让我们看几个生成随机数并使用NumPy数组随机性的例子。 播种随机数生成器 NumPy伪随机数生成器与Python标准库伪随机数生成器不同。...此函数使用单个参数来指定结果数组的大小。高斯值是从标准高斯分布中抽取的;这是一个平均值为0.0,标准差为1.0的分布。 下面的示例显示了如何生成随机高斯值数组。...具体来说,你学到了: 可以通过使用伪随机数生成器在程序中应用随机性。 如何通过Python标准库生成随机数和使用随机性。 如何通过NumPy库生成随机数组。

    19.3K30

    NumPy能力大评估:这里有70道测试题

    将 NumPy 导入为 np,并查看版本 难度:L1 问题:将 NumPy 导入为 np,并输出版本号。 2. 如何创建 1 维数组? 难度:L1 问题:创建数字从 0 到 9 的 1 维数组。...如何获得两个 Python NumPy 数组中共同的项? 难度:L2 问题:获取数组 a 和 b 中的共同项。...如何在 Python NumPy 数组中仅输出小数点后三位的数字? 难度:L1 问题:输出或显示 NumPy 数组 rand_arr 中小数点后三位的数字。...如何删除 NumPy 数组中所有的缺失值? 难度:L2 问题:从 1 维 NumPy 数组中删除所有的 nan 值。...如何计算两个数组之间的欧几里得距离? 难度:L3 问题:计算两个数组 a 和 b 之间的欧几里得距离。

    6.7K60

    第一章 | 使用python机器学习

    在学习机器学习之前需要熟悉以下几个python模块: numpy Python没有提供数组,列表(List)可以完成数组,但不是真正的数组,当数据量增大时,它的速度很慢。...所以Numpy扩展包提供了数组支持,同时很多高级扩展包依赖它。是以矩阵为基础的数学计算模块,纯数学。 SciPy SciPy是数学,科学和工程的开源软件。...pandas Pandas提供了一套名为DataFrame的数据结构,比较契合统计分析中的表结构,并且提供了计算接口,可用Numpy或其它方式进行计算。...# 数据切片 print u'切片操作:' # [:-2]后面两个两个值不取 print a[:-2] #[-2:]表示后往前数两个数字,获取数字至结尾 print a[-2:] #[:1]表示从头开始获取...1 2 3] [4] 获取第3列: [[3] [6] [9]]0.51.01.63312393532e+16[0 1 2 3] 注意,axis在numpy中表示第n个索引一个数组,在多维数组中,每个

    88650

    NumPy能力大评估:这里有70道测试题

    将 NumPy 导入为 np,并查看版本 难度:L1 问题:将 NumPy 导入为 np,并输出版本号。 2. 如何创建 1 维数组? 难度:L1 问题:创建数字从 0 到 9 的 1 维数组。...如何获得两个 Python NumPy 数组中共同的项? 难度:L2 问题:获取数组 a 和 b 中的共同项。...如何在 Python NumPy 数组中仅输出小数点后三位的数字? 难度:L1 问题:输出或显示 NumPy 数组 rand_arr 中小数点后三位的数字。...如何删除 NumPy 数组中所有的缺失值? 难度:L2 问题:从 1 维 NumPy 数组中删除所有的 nan 值。...如何计算两个数组之间的欧几里得距离? 难度:L3 问题:计算两个数组 a 和 b 之间的欧几里得距离。

    5.7K10

    数据科学 IPython 笔记本 9.10 数组排序

    我们将首先查看 Python 内置函数,然后查看 NumPy 中包含的,并针对 NumPy 数组优化的例程。...np.partition接受一个数组和一个数字K;结果是一个新数组,最小的K个值在分区左边,任意顺序的剩下的值在右边: x = np.array([7, 2, 3, 1, 6, 5, 4]) np.partition...(x, 3) # array([2, 1, 3, 4, 6, 5, 7]) 请注意,结果数组中的前三个值是数组中的三个最小值,其余数组位置包含其余值。...7, 6, 7], [1, 2, 4, 5, 7, 7], [0, 1, 4, 5, 9, 5]]) ''' 结果是一个数组,其中每行中的前两个槽包含该行中的最小值,其余值填充剩余的槽...回想一下,两点之间的平方距离是每个维度的平方差的总和;使用由 NumPy 提供的,高效广播(“数组计算:广播”)和聚合(“聚合:最小值,最大值和之间的一切”)的例程,我们可以在一行代码中计算平方距离矩阵

    1.8K10

    Numpy 简介

    什么是NumPy? NumPy是Python中科学计算的基础软件包。...更改ndarray的大小将创建一个新数组并删除原来的数组。 NumPy数组中的元素都需要具有相同的数据类型,因此在内存中的大小相同。...换句话说,为了高效地使用当今科学/数学基于Python的工具(大部分的科学计算工具),你只知道如何使用Python的原生数组类型是不够的 - 还需要知道如何使用NumPy数组。...如果数据存储在两个Python列表a和b中,我们可以迭代每个元素,如下所示: 确实符合我们的要求,但如果a和b每个包含数百万个数字,我们将为Python中循环的低效率付出代价。...image.png NumPy的主要对象是同类型的多维数组。它是一张表,所有元素(通常是数字)的类型都相同,并通过正整数元组索引。在NumPy中,维度称为轴。轴的数目为rank。

    4.7K20

    一篇文章学会numpy

    一篇文章学会numpy 简介 本文讲解如何使用numpy。 简介 NumPy是Python语言中用于科学计算的一个开源库。这个库提供了许多功能,特别是对于数组处理以及线性代数操作方面。...[2 3] [1 3 5] 1 2 3 4 5 解释: 这个示例演示了如何使用NumPy数组的索引、切片和迭代。...首先,定义两个矩阵A和B,然后使用np.dot()函数计算它们的矩阵乘积,并将结果存储在一个名为C的数组中。接下来,使用.T属性对原始矩阵A进行转置,并将结果存储在一个名为D的数组中。...使用np.save()函数将数组存储到文件中,并指定保存文件的名称。 使用np.load()函数从文件中加载数组,并将其存储在名为new_arr的新数组变量中。...= np.load("array_file.npy") # 从文件中加载数组 print(new_arr) 运行结果: [[1 2] [3 4]] 解释: 这个示例演示了如何将Numpy数组存储到磁盘上

    10010

    Python数据分析常用模块的介绍与使用

    Python数据分析模块的核心库主要包括NumPy、Pandas和Matplotlib。NumPy是Python中用于科学计算的基础包,提供了高性能的多维数组对象及工具。...它类似于常规的Python列表,但对于数值计算更高效。 一个ndarray可以有任意数量的维度,从0维(标量)到n维。每个维度被称为一个轴。...,由最后一位参数是元组还是列表决定 关于rand 在Python的NumPy库中,rand函数用于生成指定形状的随机数数组,这些随机数是从[0, 1)的均匀分布中随机抽取得到的。...Series Series是Pandas中的一种数据结构,类似于一维的数组或列表。它由两个部分组成:索引和数据值。索引是Series中数据的标签,它可以是整数、字符串或其他数据类型。...scipy.sparse:提供了稀疏矩阵的功能,可以高效地处理大规模稀疏矩阵的计算问题。 scipy.spatial:提供了空间数据结构和算法的功能,包括距离计算、最近邻搜索等。

    32010

    70道NumPy 测试题

    将 NumPy 导入为 np,并查看版本 难度:L1 问题:将 NumPy 导入为 np,并输出版本号。 2. 如何创建 1 维数组? 难度:L1 问题:创建数字从 0 到 9 的 1 维数组。...如何获得两个 Python NumPy 数组中共同的项? 难度:L2 问题:获取数组 a 和 b 中的共同项。...如何创建一个 Python 函数以对 NumPy 数组执行元素级的操作? 难度:L2 问题:转换函数 maxx,使其从只能对比标量而变为对比两个数组。...如何在 Python NumPy 数组中仅输出小数点后三位的数字? 难度:L1 问题:输出或显示 NumPy 数组 rand_arr 中小数点后三位的数字。...如何删除 NumPy 数组中所有的缺失值? 难度:L2 问题:从 1 维 NumPy 数组中删除所有的 nan 值。

    6.4K10
    领券