制作比较两列总和的条形图可以通过以下步骤实现:
腾讯云相关产品和产品介绍链接地址:
此 MATLAB 函数 绘制三维条形图,Z 中的每个元素对应一个条形图。如果 Z 是向量,y 轴的刻
导读:上篇Tableau可视化之多变折线图一文中,介绍了Tableau折线图的几种花样作图方法,今天本文继续就另一个基本可视化图表——条形图的制图及变形进行介绍。
今天跟大家分享的是另一种升级版的条形蝴蝶图! ▽▼▽ 之前曾出过一期关于蝴蝶图的教程,是一个关于Facebook、Twitter用户年龄分布的图表,今天之所以还要写蝴蝶图(升级版)的教程,是因为之前那
Power BI在2023年的首更有个重要内容:表格矩阵的图像高度宽度可以分别设置参数(详情:Power BI 重大更新:可视化能力大幅提升!),这使得表格矩阵的可视化能力上了一个大台阶。本公众号之前介绍的很多自定义图表类型现在都可以移植到原生表格中。本文以零售业业绩跟踪为例进行说明。
绘图是数据分析工作中的重要一环,是进行探索过程的一部分。Matplotlib是当前用于数据可视化的最流行的Python工具包之一,它是一个跨平台库,用于根据数组中的数据制作2D图,主要用于绘制一些统计图形,例如散点图、条形图、折线图、饼图、直方图、箱型图等。
自从乔老爷子把苹果公司的每一次发布会都搞成个人秀后,幻灯片这个词就开始变得热门起来。大家发现好的口才搭配上一张好的幻灯片可以极大吸引听众的注意力,最关键的是可以很好的宣传产品,提高企业营收额。
今天要跟大家介绍的图表是多度量的不等宽柱形图! ▽▼▽ 这种多度量的不等宽柱形图,在制作技巧上,与之前讲过的两篇不等宽柱形图有异曲同工之妙,但是在数据表达与展示上,更加强大,可以展示三个维度的数据!
我们将用Python制作瀑布图,特别是使用matplotlib库。瀑布图显示了运行总数以及增减,这对于属性分析来说是很好的选择。
地图可视化,在Excel上也是一片广阔天地,在李强老师的手下,有精彩的表现,后期【Excel催化剂】和【Excel知识管理】给大家再作深度优化,做成模板,放到Excel催化剂插件中,一键完成高级地图图表输出,欢迎继续关注。
今天跟大家分享漏斗图的制作技巧! ▽ 大家可能不经常听到漏斗图这个名字。其实这种图表常见于数据分析报告以及商务演示场合。漏斗图可以用来反映一组数据的大小趋势,通常是由大到小,并且左右居中排列,效果就像
今天要跟大家介绍一下图表中用作对比的参考线制作技巧 ▽ 参考线能够更明显的 突出真实值与目标值之间的差距 今天要介绍两种参考线的制作思路 散点图法——误差线法 ▌柱形图中的参考线 散点图法: 首先用
最近在重新整理日报,周报,月报的数据展现形式,越发觉得一份数据如何展现对于我们数据分析师的受众而言是非常重要的,数据是一种艺术,其原因之一在于如何把数字通过我们的处理变成一张漂亮的图形,意义有时候很重要,换句话,这也是体现一个人的态度和实力的渠道。 前段时间看了《Excel图表之道》这本书,收益良多。打开了我的数据展现和分析的思路,一份数据在不同的、合理的图表展示出来,代表和反映了不同的信息。恰好一位网友给我看了一张图,我觉得挺好,有些情况下我们可以这么拿出来秀一下,但更多的是展示信息给我们的受众。展示的图
今天要跟大家分享的图表是瀑布图! ▽▼▽ 瀑布图图在诸多图表中算是比较复杂的图表,因而在excel2013及以下版本中并没有办法直接制作,不过最近更新的excel2016版中已经内置了瀑布图图表样式。
以下部分是基于《Fundamentals of Data Visualization》学习笔记,要是有兴趣的话,可以直接看原版书籍:https://serialmentor.com/dataviz/
今天要跟大家分享的技巧是子弹图(Bullet Chart)在条形图中的实现! ▽▼▽ 前一篇分享了子弹图(柱形形式)的 制作技巧,这一片接着讲解子弹图在条形图中的实现方式! ●●●●● 原数据是一致的
今天要跟大家分享的是纵向折线图! 本例中要展示的是纵向折线图的制作技巧! 在excel中折线图、散点图等图表类型是没有办法直接做成纵向的那种的(就像是柱形图和条形图的差别)。 但是通过添加辅助系列和若
表格是一种组织和可视化数据的强大方式。然而,无论数据如何组织,数字的大型表格可能难以解释。 有时解释图片比数字容易得多。
Severino Ribecca 是一位平面设计师,也是数据可视化的爱好者,他在自己的网站上收录了 60 种可视化图表样式以及它们分别适用于什么样的场景,并且推荐了相应的制作工具。
数据可视化的爱好者Severino Ribecca,他在自己的网站上收录了 60 种可视化图表样式以及它们分别适用于什么样的场景,并且推荐了相应的制作工具。
制作这样的一个动态图使用到的是Pyecharts中的TimeLine(时间线轮播图),代码实现起来其实稍有难度,但我希望能通过讲解这样一张动态图的制作过程,来让各位读者可以使用Pyecharts将任何一种图动起来,我们开始吧!
最后,选中平均值代表的条子,然后右击,接下来,选择更改图表类型,把类型改为折线,看一下效果吧~~
绘图是数据分析工作中的重要一环,是探索过程的一部分。Matplotlib是当前用于数据可视化的最流行的Python包之一,本文主要介绍数据可视化分析工具:Matplotlib。
滑珠图通常用来比较两个或者两个以上的类型的对比关系,可以清晰地看出大小关系。这类图表经常见于经典杂志上面。如《经济学人》。
今天跟大家分享背景填充式条形图、柱图的制作技巧! ▽▼▽ 本例要介绍的填充式图表与之前推送的一篇温度计风格图表的制作方式有点儿类似,不过制作方法上有些不同,在这里再次跟大家分享一下! ●●●●● 首先
通常我们在Excel绘制图表的流程是:选中数据-插入图表-调整图表格式。这种制图方式有两个缺点:一是受Excel图表类型及格式限制,无法自由发挥;二是图表与数据在展示上是割裂的存在。
Python 的科学栈相当成熟,各种应用场景都有相关的模块,包括机器学习和数据分析。数据可视化是发现数据和展示结果的重要一环,只不过过去以来,相对于 R 这样的工具,发展还是落后一些。 幸运的是,过去几年出现了很多新的Python数据可视化库,弥补了一些这方面的差距。matplotlib 已经成为事实上的数据可视化方面最主要的库,此外还有很多其他库,例如vispy,bokeh, seaborn, pyga, folium 和 networkx,这些库有些是构建在 matplotlib 之上,还有些有其他一
导读:绘图是数据分析工作中的重要一环,是探索过程的一部分。Matplotlib是当前用于数据可视化的最流行的Python包之一,本文主要介绍数据可视化分析工具:Matplotlib。
簇状条形图可以对比本期和同期的绝对值差异,气泡图可以体现增长率值。依据《Power BI表格矩阵内部空间组合》的思路,我们可以在表格方便的制作以下对比图表,条形图在列显示,气泡图在条件格式显示。
注意啦!注意啦!在文章《200篇Excel精华原创教程汇集!(文末免费领1899元课程福利!)》下留言,将有机会获赠价值500元的微课视频券,购课可抵消。赶紧戳上面蓝色文字链接,了解具体活动吧!
数据可视化就是把枯燥的数据用图形化的方式展示出来,从而能够更好地理解数据背后的含义。数据可视化有广义和狭义两种理解,狭义的理解就是将数据用图表的形式表达出来,广义的理解则涵盖了信息图形化(Infographics)。广义和狭义的定义都是用图形来表达数据背后的逻辑,图形化后的数据所传达的含义更加直观,含义更加丰富。而且数据可视化提高了对数据差异化的敏感度。
百分比指标有两种情况,一种是没有上限和下限的百分比,比如业绩增长率可能正数也可能负数,且增长幅度不确定。一种是具有明确边界的百分比,边界值通常是100%,比如中国占全球的人口比例,某种食物的蛋白质含量,业绩实际值与目标值对比。在Power BI表格矩阵中,如何展示百分比?本文对前期的分享进行一个总结。
标靶图在通常的情况下是在基本条形图的基础上增加一些参考线,参考区间,可以帮助分析人员更加直观的了解两个度量之间的关系。通常是用来比较计划值和实际值,就是说我的这个东西有没有达标,有没有达到计划的标准。
数据可视化是数据科学的重要组成部分。它对于探索和理解数据非常有用。在某些情况下,可视化在传递信息方面也比普通数字好得多。
今天跟大家分享用条件格式制作条形数据组图! ▽▼▽ 记得之前有一期跟大家分享过条件格式图表的制作方法,今天所要讲的案例,方法是一样的,只是通过多个条形图叠加及排版,形成看起来如同整体的数据报表! ●●
千呼万唤出来的Excel新图表,真的好用么?真的够用么?从来对图表有点追求的人都很不屑于用Excel原生图表出来的效果,颜色丑,看多两眼就显呆板,就连新出的一堆瀑布图、树状图、漏斗图等也不出例外。
本文链接:https://blog.csdn.net/qq_45176548/article/details/112777582
(微信公众号由于改版,导致留言功能不能使用,本期采用 留言小程序 进行留言功能测试,如果不行或者效果较差,大家有什么问题可选择点击公众号,找到 “找我” ,添加本人微信号进行问题咨询和数据获取。等人数到达一定数量后,我会构建学习交流群,大家共同进步
本系列是数据可视化基础与应用的第02篇,主要介绍基于powerbi实现医院数据集的指标体系的仪表盘制作。
Power BI表格矩阵有三个可以动态变化的空间,分别是值、总计、条件格式图标。通常情况下,值和总计占据长方形的空间,条件格式图标表现为正方形(参考《Power BI条件格式图标的空间构造》)。
一、数据可视化,是关于数据视觉表现形式的科学技术研究。其中,这种数据的视觉表现形式被定义为,一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。它是一个处于不断演变之中的概念,其边界在不断地扩大。主要指的是技术上较为高级的技术方法,而这些技术方法允许利用图形、图像处理、计算机视觉以及用户界面,通过表达、建模以及对立体、表面、属性以及动画的显示,对数据加以可视化解释。与立体建模之类的特殊技术方法相比,数据可视化所涵盖的技术方法要广泛得多。
由于数据可视化的重要性,在数据科学的生态系统中有许多数据可视化库和框架。其中一个流行的是Seaborn,这是一个用于Python的统计数据可视化库。
今天跟大家讲解excel在制作条形图时的顺序调整问题 不知道大家发现了没有 excel在制作条形图时有一个bug 默认的图表数据系列顺序总是与原数据系列顺序相反 无论你是否对原数据进行排序 以下两个
Tableau是当今数据科学和商业智能专业人员使用的最流行的数据可视化工具之一。它使您能够以交互式和多彩的方式创建具有洞察力和影响力的可视化效果。
点阵图表 (Dot Matrix Chart) 以点为单位显示离散数据,每种颜色的点表示一个特定类别,并以矩阵形式组合在一起。
上文《Power BI 宇宙系列之土星篇》介绍了对土星环的可视化模拟,本节放眼到整个太阳系。
做数据分析和做科普是类似的,科普的意义在于将晦涩难懂的科学知识,以让大众更易接受和理解的方式呈现。而数据分析中的数据可视化做的正是如此关键中的关键,即是将数据的特点以一种显而易见的形式进行呈现。但也不必说的那么高级,我们可以说数据可视化就是“画图”。
前言 数据的世界正在发生急剧变化,任何人都应该访问自己需要的数据,并具备获取任何数据的洞察力,而tableau正是帮我们洞察数据的好帮手。 Tableau作为BI tool leader ( 2016 Gartner BI chart), 它不仅是一款可视化软件,还具备不可忽略的强大的Data connection, collaboration, security management, multi-platform功能性: Data connection:Tableau Desktop可直接连接S
条形图专用于离散变量和数值变量之间的可视化展现,其通过柱子的高低,直观地比较离散变量各水平之间的差异,它被广泛地应用于工业界和学术界。在R语言的ggplot2包中,读者可以借助于geom_bar函数轻松地绘制条形图。对于条形图大家对其的印象是什么呢?又见过哪些种类的条形图呢?在本篇文章我将带着各位网友说道说道有关条形图的哪些品种。
数据可视化是数据科学家工作的重要组成部分。在项目的早期阶段,你通常会进行探索性数据分析(EDA),以获得对数据的一些见解。创建可视化确实有助于使事情更清晰和更容易理解,特别是对于更大的、高维的数据集。在项目接近尾声时,以一种清晰、简洁和引人注目的方式展示最终结果是非常重要的,这样你的受众(通常是非技术客户)就更加容易理解。
领取专属 10元无门槛券
手把手带您无忧上云