MLPClassifier是scikit-learn库中的一个多层感知器(MLP)分类器模型。要在MLPClassifier中使用sklearn绘制训练和测试数据的准确性和损失曲线,可以按照以下步骤进行操作:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
X, y = make_classification(n_samples=1000, n_features=20, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = MLPClassifier(hidden_layer_sizes=(100, 100), max_iter=1000, random_state=42)
model.fit(X_train, y_train)
train_accuracy = model.score(X_train, y_train)
test_accuracy = model.score(X_test, y_test)
loss_values = model.loss_curve_
plt.figure(figsize=(10, 6))
plt.plot(model.validation_scores_, label='Training Accuracy')
plt.plot(model.validation_scores_, label='Testing Accuracy')
plt.xlabel('Iterations')
plt.ylabel('Accuracy')
plt.title('Training and Testing Accuracy')
plt.legend()
plt.show()
plt.figure(figsize=(10, 6))
plt.plot(loss_values)
plt.xlabel('Iterations')
plt.ylabel('Loss')
plt.title('Training Loss')
plt.show()
这样,你就可以在MLPClassifier中使用sklearn绘制训练和测试数据的准确性和损失曲线了。
关于腾讯云相关产品和产品介绍链接地址,由于要求不能提及具体品牌商,建议你参考腾讯云官方文档或咨询腾讯云官方客服获取相关信息。
领取专属 10元无门槛券
手把手带您无忧上云