首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在c ++中找到2d数组大小

在C++中,2D数组的大小是固定的,因此要找到2D数组的大小,需要知道数组的行数和列数。以下是一个示例,展示了如何在C++中找到2D数组的大小:

代码语言:cpp
复制
#include<iostream>

int main() {
    int arr[4][5]; // 定义一个4行5列的二维数组

    // 计算行数和列数
    int rows = sizeof(arr) / sizeof(arr[0]);
    int cols = sizeof(arr[0]) / sizeof(arr[0][0]);

    std::cout << "2D数组的行数为:"<< rows<< std::endl;
    std::cout << "2D数组的列数为:"<< cols<< std::endl;

    return 0;
}

在这个示例中,我们定义了一个4行5列的二维数组arr。然后,我们使用sizeof操作符来计算行数和列数。sizeof(arr)返回整个数组的大小(以字节为单位),而sizeof(arr[0])返回每行的大小。因此,我们可以通过将sizeof(arr)除以sizeof(arr[0])来得到行数。同样地,我们可以通过将sizeof(arr[0])除以sizeof(arr[0][0])来得到列数。

请注意,这种方法仅适用于固定大小的2D数组。如果您使用动态分配的数组(例如,使用new分配的数组),则需要单独存储行数和列数。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 使用Numpy和Opencv完成图像的基本数据分析(Part III)

    本文是使用python进行图像基本处理系列的第三部分,在本人之前的文章里介绍了一些非常基本的图像分析操作,见文章《使用Numpy和Opencv完成图像的基本数据分析Part I》和《使用Numpy和Opencv完成图像的基本数据分析 Part II》,下面我们将继续介绍一些有关图像处理的好玩内容。 本文介绍的内容基本反映了我本人学习的图像处理课程中的内容,并不会加入任何工程项目中的图像处理内容,本文目的是尝试实现一些基本图像处理技术的基础知识,出于这个原因,本文继续使用 SciKit-Image,numpy数据包执行大多数的操作,此外,还会时不时的使用其他类型的工具库,比如图像处理中常用的OpenCV等: 本系列分为三个部分,分别为part I、part II以及part III。刚开始想把这个系列分成两个部分,但由于内容丰富且各种处理操作获得的结果是令人着迷,因此不得不把它分成三个部分。系列所有的源代码地址:GitHub-Image-Processing-Python。 在上一篇文章中,我们已经完成了以下一些基本操作。为了跟上今天的内容,回顾一下之前的基本操作:

    02

    PE文件详解(六)

    这篇文章转载自小甲鱼的PE文件详解系列原文传送门 之前简单提了一下节表和数据目录表,那么他们有什么区别? 其实这些东西都是人为规定的,一个数据在文件中或者在内存中的位置基本是固定的,通过数据目录表进行索引和通过节表进行索引都是可以找到的,也可以这么说,同一个数据在节表和数据目录表中都有一份索引值,那么这两个表有什么区别?一般将具有相同属性的值放到同一个节区中,这也就是说同一个节区的值只是保护属性相同,但是他们的用途不一定是一样的,但是在同一数据目录表中的数据的作用是相同的,比如输入函数表中只会保存输入函数的相关信息,输出函数表中只会保存输出函数的信息,而输入输出函数在PE文件中可能都位于.text这个节中。

    02

    EmguCV 常用函数功能说明「建议收藏」

    大家好,又见面了,我是你们的朋友全栈君。AbsDiff,计算两个数组之间的绝对差。 dst(I)c = abs(src1(I)c-src2(I)c)。所有数组必须具有相同的数据类型和相同的大小(或ROI大小)。 累加,将整个图像或其所选区域添加到累加器和。 累积产品,将2张图像或其选定区域的产品添加到累加器中。 AccumulateSquare,将输入src或其选定的区域,增加到功率2,添加到累加器sqsum。 累积权重,计算输入src和累加器的加权和,以使acc成为帧序列的运行平均值:acc(x,y)=(1-alpha)* acc(x,y)+ alpha * image(x,y )如果mask(x,y)!= 0,其中alpha调节更新速度(累加器对于先前帧的多少速度).. 自适应阈值,将灰度图像转换为二进制图像。每个像素单独计算的阈值。对于方法CV_ADAPTIVE_THRESH_MEAN_C,它是blockSize x blockSize像素邻域的平均值,由param1减去。对于方法CV_ADAPTIVE_THRESH_GAUSSIAN_C,它是blockSize x blockSize像素邻域的加权和(高斯),由param1减去。 添加,将一个数组添加到另一个数组:dst(I)= src1(I)+ src2(I)if mask(I)!= 0所有数组必须具有相同的类型,除了掩码和大小(或ROI)尺寸)。 AddWeighted,计算的两个数组的加权和如下:dst(I)= src1(I)* alpha + src2(I)* beta + gamma所有的数组必须具有相同的类型和相同的大小(或ROI大小)。 ApplyColorMap,将颜色映射应用于图像。 ApproxPolyDP,近似具有指定精度的多边形曲线。 ArcLength,计算轮廓周长或曲线长度。 ArrowedLine,绘制从第一个点指向第二个点的箭头段。 BilateralFilter,将双边滤镜应用于图像。 BitwiseAnd,并计算两个数组的每元素的逐位逻辑连接:dst(I)= src1(I)&src2(I)if mask(I)!= 0在浮点数组的情况下,使用它们的位表示为了操作。所有阵列必须具有相同的类型,除了掩码和大小相同。 BitwiseNot,反转每个数组元素的每一位:。 BitwiseOr,计算两个数组的每元素逐位分离:dst(I)= src1(I)| src2(I)在浮点数组的情况下,它们的位表示用于操作。所有阵列必须具有相同的类型,除了掩码和大小相同。 BitwiseXor,计算两个数组的每元素的逐位逻辑连接:dst(I)= src1(I)^ src2(I)if mask(I)!= 0在浮点数组的情况下,使用它们的位表示为了操作。所有阵列必须具有相同的类型,除了掩码和大小相同。 模糊,使用归一化的盒式过滤器模糊图像。 BoundingRectangle,返回2d点集的右上角矩形。 BoxFilter,使用框过滤器模糊图像 BoxPoints(RotatedRect),计算输入2d框的顶点。 BoxPoints(RotatedRect,IOutputArray),计算输入2d框的顶点。 CalcBackProject,计算直方图的反投影。 CalcCovar矩阵,计算一组向量的协方差矩阵。 CalcGlobalOrientation,计算所选区域中的一般运动方向,并返回0到360之间的角度。首先,函数构建方向直方图,并将基本方向作为直方图最大值的坐标。之后,该函数计算相对于基本方向的移位,作为所有方向向量的加权和:运动越近,权重越大。得到的角度是基本方向和偏移的圆和。 CalcHist,计算一组数组的直方图 CalcMotionGradient,计算mhi的导数Dx和Dy,然后计算梯度取向为:方向(x,y)= arctan(Dy(x,y)/ Dx(x,y)),其中Dx(x,y)考虑Dy(x,y)“符号(如cvCartToPolar函数)。填写面罩后,指出方向有效(见delta1和delta2说明).. CalcOpticalFlowFarneback(IInputArray,IInputArray,IInputOutputArray,Double,Int32,Int32,Int32,Int32,Double,OpticalflowFarnebackFlag),使用Gunnar Farneback算法计算密集的光流。 CalcOpticalFlowFarneback(Image <Gray,Byte>,Image <Gray,Byte>,Image <Gray,Single>,Image <Gray,Single>,Double

    02
    领券