首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在fitdistrplus中用尺度和位置参数拟合t分布

在fitdistrplus中,可以使用尺度和位置参数来拟合t分布。t分布是一种常用的概率分布,适用于小样本情况下的统计推断。

尺度参数(scale parameter)用于控制t分布的离散程度,即尾部的厚度。较大的尺度参数会使分布更加扁平,尾部更厚。较小的尺度参数会使分布更加陡峭,尾部更薄。

位置参数(location parameter)用于控制t分布的中心位置。它表示分布的均值,可以使分布在水平方向上平移。

在fitdistrplus中,可以使用以下代码来拟合t分布:

代码语言:R
复制
library(fitdistrplus)

# 生成一组样本数据
data <- rt(n = 100, df = 10)

# 定义t分布的概率密度函数
dt <- function(x, df, mean, sd) {
  (gamma((df + 1) / 2) / (sqrt(df * pi) * gamma(df / 2))) * 
    (1 + ((x - mean) ^ 2 / (df * sd ^ 2))) ^ (-(df + 1) / 2)
}

# 定义t分布的对数似然函数
logLik_t <- function(params) {
  df <- params[1]
  mean <- params[2]
  sd <- params[3]
  
  sum(log(dt(data, df, mean, sd)))
}

# 初始参数值
start_params <- c(df = 10, mean = mean(data), sd = sd(data))

# 拟合t分布
fit <- fitdist(data, "t", start = start_params, method = "BFGS", lower = c(0, -Inf, 0))

# 输出拟合结果
summary(fit)

在上述代码中,首先使用rt函数生成了一个t分布的样本数据。然后定义了t分布的概率密度函数dt和对数似然函数logLik_t。接下来,使用fitdist函数拟合t分布,其中指定了初始参数值start_params、拟合方法method为BFGS,并设置了参数的取值范围lower。

最后,使用summary函数输出拟合结果,包括参数估计值、标准误差、置信区间等信息。

腾讯云提供了云计算相关的产品和服务,例如云服务器、云数据库、云存储等。具体可以参考腾讯云的官方网站(https://cloud.tencent.com/)获取更详细的产品介绍和相关链接。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

NC:皮层微结构的神经生理特征

在整个皮层中观察到微结构的系统空间变化。这些微结构梯度反映在神经活动中,可以通过神经生理时间序列捕获。自发的神经生理动力学是如何在整个皮层组织的,以及它们是如何从异质皮层微结构中产生的,目前尚不清楚。在这里,我们通过估计来自静息状态脑磁图(MEG)信号的6800多个时间序列特征,广泛地描绘了整个人脑的区域神经生理动力学。然后,我们将区域时间序列概况映射到一个全面的多模式,多尺度的皮质微结构图谱,包括微观结构,代谢,神经递质受体,细胞类型和层流分化。我们发现神经生理动力学的主导轴反映了信号的功率谱密度和线性相关结构的特征,强调了电磁动力学的常规特征的重要性,同时识别了传统上较少受到关注的附加信息特征。此外,神经生理动力学的空间变化与多种微结构特征共定位,包括基因表达梯度、皮质髓鞘、神经递质受体和转运体、氧和葡萄糖代谢。总的来说,这项工作为研究神经活动的解剖学基础开辟了新的途径。

05

SIFT特征点提取「建议收藏」

计算机视觉中的特征点提取算法比较多,但SIFT除了计算比较耗时以外,其他方面的优点让其成为特征点提取算法中的一颗璀璨的明珠。SIFT算法的介绍网上有很多比较好的博客和文章,我在学习这个算法的过程中也参看网上好些资料,即使评价比较高的文章,作者在文章中对有些比较重要的细节、公式来历没有提及,可能写博客的人自己明白,也觉得简单,因此就忽略了这些问题,但是对刚入门的人来说,看这些东西,想搞清楚这些是怎么来的还是比较费时费力的。比如SIFT算法中一个重要的操作:求取描述子的主方向。好多文章只是一提而过或忽略,然后直接给出一个公式,SIFT算法的原作者也提使用抛物线插值,但是具体怎么插的就不太详尽了,对于初学者来说更是不知所云。因此本文打算在参看的文章上对有关这些细节给出一些比较详细的说明,还有本文尽量对操作过程配备对应图片或示意图说明,同时附上robwhesss开源SIFT C代码对应程序块并给予注解,方便理解。

02

学界 | 清华与迈阿密大学独家解析:更新了朋友圈和微博动态,好友何时会点赞评论?

AI科技评论按:本文由清华大学媒体与网络实验室以及迈阿密大学物理系共同合作完成,作者包括:余林韵(清华大学计算机系博士生,已毕业加入今日头条人工智能实验室)、崔鹏(清华大学计算机系副教授、博士生导师)、宋超明(迈阿密大学物理系助理教授)、张天扬(清华大学计算机系博士生)、杨士强(清华大学计算机系教授、博士生导师)。 在社交网络中,用户们会对周边用户的行为做出反应,这些在不同时间、空间发生的行为构成了社交网络中的信息流。其中,用户与用户间的交互行为是整个信息传播过程中最微观的指标,它对理解和揭示信息传播过程的

012

推导和实现:全面解析高斯过程中的函数最优化(附代码&公式)

本文从理论推导和实现详细地介绍了高斯过程,并提供了用它来近似求未知函数最优解的方法。 高斯过程可以被认为是一种机器学习算法,它利用点与点之间同质性的度量作为核函数,以从输入的训练数据预测未知点的值。本文从理论推导和实现详细地介绍了高斯过程,并在后面提供了用它来近似求未知函数最优解的方法。 我们回顾了高斯过程(GP)拟合数据所需的数学和代码,最后得出一个常用应用的 demo——通过高斯过程搜索法快速实现函数最小化。下面的动图演示了这种方法的动态过程,其中红色的点是从红色曲线采样的样本。使用这些样本,我们试图

04

经典/深度SfM有关问题的整理[通俗易懂]

这篇博客主要是记录一些实践或看论文过程中遇到的一些不好理解的问题及解释。 Q1:SfM里的尺度不变性指的是什么? A1:一般定义下,尺度不变性是指体系经过尺度变换后,其某一特性不变。比如,特征点检测算法SIFT,其检测到的特征点的尺度不变性是通过图像金字塔来实现的。这样,不管原图的尺度是多少,在包含了所有尺度的尺度空间下都能找到那些稳定的极值点,这样就做到了尺度不变。关于SIFT尺度不变性的更详细讲解,可以参考这篇博客。 Q2:单目相机SfM重建结果的尺度是怎么确定的? A2:传统方法中,单目重建是无法获取重建场景的尺度信息的。因此,要确定重建的尺度,需要使用额外的手段。比如:

02
领券