首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何比较数据框中不同年份月度值的变化,Pandas/Python

在数据分析中,比较数据框(DataFrame)中不同年份的月度值变化是一项常见任务。Pandas 是一个强大的 Python 库,专门用于数据操作和分析,非常适合处理这类问题。以下是如何使用 Pandas 来比较不同年份月度值变化的步骤和相关概念:

基础概念

  • 数据框(DataFrame):Pandas 中的一个二维表格型数据结构,包含行和列。
  • 时间序列分析:处理按时间顺序排列的数据的方法。
  • 重采样(Resampling):改变时间序列数据的频率。

相关优势

  • 灵活性:Pandas 提供了丰富的数据操作功能。
  • 高效性:底层使用 NumPy,处理速度快。
  • 易用性:简洁的 API 设计使得数据分析变得简单。

类型与应用场景

  • 类型:时间序列分析、数据聚合、数据透视等。
  • 应用场景:金融数据分析、气象记录比较、销售趋势分析等。

示例代码

假设我们有一个包含年份和月份以及相应值的数据框 df,如下所示:

代码语言:txt
复制
import pandas as pd

# 示例数据
data = {
    'Year': [2020, 2020, 2020, 2021, 2021, 2021],
    'Month': [1, 2, 3, 1, 2, 3],
    'Value': [100, 150, 200, 120, 170, 220]
}
df = pd.DataFrame(data)

步骤 1: 转换为时间序列

首先,将年份和月份合并为一个日期时间对象:

代码语言:txt
复制
df['Date'] = pd.to_datetime(df[['Year', 'Month']].assign(Day=1))
df.set_index('Date', inplace=True)

步骤 2: 计算月度变化

计算每个月相对于前一年的变化百分比:

代码语言:txt
复制
df_monthly = df.resample('M').last()  # 获取每个月的最后一个值
df_monthly_pct_change = df_monthly.pct_change(periods=12) * 100  # 计算年对年的百分比变化

步骤 3: 查看结果

查看计算出的百分比变化:

代码语言:txt
复制
print(df_monthly_pct_change)

可能遇到的问题及解决方法

问题:数据中存在缺失值。 解决方法:在进行重采样或计算之前,可以使用 fillna 方法填充缺失值,或者使用 dropna 删除含有缺失值的行。

代码语言:txt
复制
df.fillna(method='ffill', inplace=True)  # 前向填充
# 或者
df.dropna(inplace=True)  # 删除含有缺失值的行

通过上述步骤,你可以有效地比较和分析不同年份间的月度值变化。这种方法不仅适用于简单的百分比变化计算,还可以扩展到更复杂的时间序列分析中。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

【Python】基于某些列删除数据框中的重复值

# coding: utf-8 import os #导入设置路径的库 import pandas as pd #导入数据处理的库 import numpy as np #...导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv('name.csv...从结果知,参数为默认值时,是在原数据的copy上删除数据,保留重复数据第一条并返回新数据框。 感兴趣的可以打印name数据框,删重操作不影响name的值。...如果不写subset参数,默认值为None,即DataFrame中一行元素全部相同时才去除。 从上文可以发现,在Python中用drop_duplicates函数可以轻松地对数据框进行去重。...但是对于两列中元素顺序相反的数据框去重,drop_duplicates函数无能为力。 如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-

20.5K31

利用query()与eval()优化pandas代码

本文就将带大家学习如何在pandas中化繁为简,利用query()和eval()来实现高效简洁的数据查询与运算。...TV」 ❞ 图3 通过比较可以发现在使用query()时我们在不需要重复书写数据框名称[字段名]这样的内容,字段名也直接可以当作变量使用,而且不同条件之间不需要用括号隔开,在条件繁杂的时候简化代码的效果更为明显...而pandas中的eval()有两种,一种是top-level级别的eval()函数,而另一种是针对数据框的DataFrame.eval(),我们接下来要介绍的是后者,其与query()有很多相同之处,...策略之后无法被解析的日期会填充pd.NAT,而缺失值之间是无法进行相等比较的: # 利用assign进行新增字段计算并保存为新数据框 result1 = netflix.assign(years_to_now...('月度发行数量排名') 图15 使用query()+eval(),升华pandas数据分析操作。

1.5K30
  • (数据科学学习手札92)利用query()与eval()优化pandas代码

    本文就将带大家学习如何在pandas中化繁为简,利用query()和eval()来实现高效简洁的数据查询与运算。 ?...图3   通过比较可以发现在使用query()时我们在不需要重复书写数据框名称[字段名]这样的内容,字段名也直接可以当作变量使用,而且不同条件之间不需要用括号隔开,在条件繁杂的时候简化代码的效果更为明显...而pandas中的eval()有两种,一种是top-level级别的eval()函数,而另一种是针对数据框的DataFrame.eval(),我们接下来要介绍的是后者,其与query()有很多相同之处,...策略之后无法被解析的日期会填充pd.NAT,而缺失值之间是无法进行相等比较的: # 利用assign进行新增字段计算并保存为新数据框 result1 = netflix.assign(years_to_now...图13   虽然assign()已经算是pandas中简化代码的很好用的API了,但面对eval(),还是逊色不少 DataFrame.eval()通过传入多行表达式,每行作为独立的赋值语句,其中对应前面数据框中数据字段可以像

    1.7K20

    【Python】基于多列组合删除数据框中的重复值

    最近公司在做关联图谱的项目,想挖掘团伙犯罪。在准备关系数据时需要根据两列组合删除数据框中的重复值,两列中元素的顺序可能是相反的。...本文介绍一句语句解决多列组合删除数据框中重复值的问题。 一、举一个小例子 在Python中有一个包含3列的数据框,希望根据列name1和name2组合(在两行中顺序不一样)消除重复项。...二、基于两列删除数据框中的重复值 1 加载数据 # coding: utf-8 import os #导入设置路径的库 import pandas as pd #导入数据处理的库...import numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 df =...numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv

    14.7K30

    周期序预测列问题中的朴素模型——周期跟随模型(Seasonal Persistence)

    在本文中我们将探究如何在Python中实现周期跟随预测算法。 本文的主要内容: 如何利用前面周期中的观测值进行周期跟随预测。 如何利用前面n个周期中相同的时间窗口观测值进行跟随预测。...根据数据集的说明,年份1对应的是1900年,不过实际上起始年份的选取并不影响模型的参数。 下面的代码演示了如何利用pandas导入我们的数据集并完成年份格式的转换。...在前两种情况中,我们可以看到模型的预测性能在某个固定的时间窗个数达到最小值,增大或减小都会导致性能下降。而这个例子中不同,随着时间窗个数的增加,预测性能也在不断增加。...这反映了在温度数据上,周期跟随模型是一个很不错的参照或优化的基础。 总结 在本教程中,我们提出并探究使用了周期跟随模型。 总结一下本文解决的主要问题: 如何利用前面周期中的观测值来做周期跟随预测。...如何综合前面多个周期的观测值来做周期跟随预测。 如何将这一模型应用于每天的时间序列数据和月度时间序列数据。

    2.4K70

    懂Excel轻松入门Python数据分析包pandas(29):轻松做出筛选控件

    后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 本系列介绍了许多类比 Excel 的 pandas 操作,确实他们都能很好对应起来,这是因为 pandas...,我们能通过最上方选择不同的年份,下方数据表能马上显示此年份总销量 top 10 的地区数据 用 Python 能快速简单做出这种效果吗?...处理 本文需要导入的库是这些: 首先使用 pandas 得到透视表的结果,这非常简单: 行3,4:为了突出可以变化的东西,这里定义2个变量 通过修改2个变量,我们能得到对应的结果数据 但是这远远不够...,想看不同年份或不同 Top N 的结果,都需要修改代码。...10种选择,界面同样可以看到下拉框 现在,我们只需要简单从下拉框选择条件值,下方的结果会马上刷新,这与 Excel 中的透视表一模一样 不过,大家都知道 Excel 中还能根据透视表制作透视图,这里我们同样可以制作出动态变化的图表

    94120

    Python时间序列分析全面指南(附代码)

    让我们用pandas包里的read.csv()读取时间序列数据(一个澳大利亚药品销售的csv文件)作为一个pandas数据框。...这可以让你同时比较不同年份的模式。...很明显,该模式在特定的某一年中重复,且年年如此。 然而,随着年份推移,药品销售整体增加。你可以很好地看到该趋势并且在年份箱线图当中看到它是怎样变化的。...4.2 月度(季节性)箱线图和年度(趋势)分布 你可以季节间隔将数据分组,并看看在给定的年份或月份当中值是如何分布的,以及随时间推移它们是如何比较的。...趋势,季节性和残差成分的数值输出被存储在result_mul 当中。让我们提取它们并导入数据框中。

    1.7K11

    独家 | Python时间序列分析:一项基于案例的全面指南

    让我们用pandas包里的read.csv()读取时间序列数据(一个澳大利亚药品销售的csv文件)作为一个pandas数据框。...数据框时间序列 此外,你也可以将其导入为date作为索引的pandas序列。你只需要固定pd.read_csv()里的index_col参数。...航空乘客数据——两侧序列 因为这是一个月度时间序列,每年遵循特定的重复模式,你可以把每年作为一个单独的线画在同一张图上。这可以让你同时比较不同年份的模式。...你可以很好地看到该趋势并且在年份箱线图当中看到它是怎样变化的。同样地,你也可以做一个月份箱线图来可视化月度分布情况。...4.2 月度(季节性)箱线图和年度(趋势)分布 你可以季节间隔将数据分组,并看看在给定的年份或月份当中值是如何分布的,以及随时间推移它们是如何比较的。

    3.2K30

    完整数据分析流程:Python中的Pandas如何解决业务问题

    图片开篇作为万金油式的胶水语言,Python几乎无所不能,在数据科学领域的作用更是不可取代。数据分析硬实力中,Python是一个非常值得投入学习的工具。...这其中,数据分析师用得最多的模块非Pandas莫属,如果你已经在接触它了,不妨一起来通过完整的数据分析流程,探索Pandas是如何解决业务问题的。...数据背景为了能尽量多地使用不同的Pandas函数,我设计了一个古古怪怪但是实际中又很真实的数据,说白了就是比较多不规范的地方,等着我们去清洗。数据源是改编自一家超市的订单,文末附文件路径。...异常值:不规范的数据,如空值、重复数据、无用字段等,需要注意是否存在不合理的值,比如订单数据中存在内部测试订单、有超过200岁年龄的顾客等特别注意数据格式是否合理,否则会影响表格合并报错、聚合统计报错等问题不符合业务分析场景的数据...,比如要分析2019-2021年的用户行为,则在此时间段之外的行为都不应该被纳入分析 如何处理:一般情况下,对于异常值,直接剔除即可但对于数据相对不多,或该特征比较重要的情况下,异常值可以通过用平均值替代等更丰富的方式处理在了解数据清洗的含义后

    1.7K31

    如何用 Python 和 Pandas 分析犯罪记录开放数据?

    这里我们使用的是 Pandas 中的 value_counts 函数。它可以帮助我们自动统计某一列中不同类别出现的次数,而且还自动进行排序。为了显示的方便,我们只要求展示前10项内容。...我这里给你提供一个数据源,请你参考它,进行比例数值计算,修正上面的折线图。 下面,我们比较一下,不同月份之间,是否有明显的抢劫犯罪发生数量差别。...8点依然比较安全。但是最危险的时段,变成了晚上8点多。莫非劫匪们也打算早点儿休息? 如果我们更加小心谨慎,还可以根据不同月份,来查看不同时段的抢劫案件发生数量。...因为许多时间段,本来就没有抢劫案件发生,所以这个表中,出现了许多空值(NaN)。我们根据具体情况,采用0来填充。Pandas 中数据填充的函数是 fillna。...小结 通过本文的学习,希望你已掌握了以下内容: 如何检索、浏览和获取开放数据; 如何用 Python 和 Pandas 做数据分类统计; 如何在 Pandas 中做数据变换,以及缺失值补充; 如何用 Pandas

    1.9K20

    这款Python数据可视化库真香!

    点击“博文视点Broadview”,获取更多书讯 用Python进行数据可视化你会用什么库来做呢? 今天就来和大家分享Python数据可视化库中的一员猛将——Altair!...Pandas 中的 DataFrame 是 Altair 使用的主要数据结构之一。Altair对Pandas的DataFrame有很好地加载效果,加载方法简单高效。...例如,使用Pandas读取Excel数据集,使用Altair加载Pandas返回值的实现代码,如下所示: import altair as altimport pandas as pd...条形图可以更好地使用长度变化比较商品销售利润的差距,如下图所示。 对照柱形图的实现代码,条形图的实现代码变化的部分如下所示。...各章概要 第1 章,介绍Altair 的安装方法和Jupyter 的安装方法,重点讲解Altair 数据集的JSON 数据结构和Pandas 的数据框对象,以及数据预处理的高效工具。

    1.6K30

    Pandas profiling 生成报告并部署的一站式解决方案

    它向用户提供数据集所有特征的描述性统计摘要,尽管其比较常用,但它仍然没有提供足够详细的功能。 Pandas profiling 可以弥补 pandas describe 没有详细数据报告生成的不足。...数据集和设置 看下如何启动 pandas_profiling 库并从数据框中生成报告了。...该Overview包括总体统计的。这包括变量数(数据框的特征或列)、观察数(数据框的行)、缺失单元格、缺失单元格百分比、重复行、重复行百分比和内存中的总大小。...变量 报告的这一部分详细分析了数据集的所有变量/列/特征。显示的信息因变量的数据类型而异。 数值变量 对于数值数据类型特征,可以获得有关不同值、缺失值、最小值-最大值、平均值和负值计数的信息。...字符串类型值的概览选项卡显示最大-最小中值平均长度、总字符、不同字符、不同类别、唯一和来自数据集的样本。 类别选项卡显示直方图,有时显示特征值计数的饼图。该表包含值、计数和百分比频率。

    3.3K10

    从小白到大师,这里有一份Pandas入门指南

    Pandas 是一个「开源的、有 BSD 开源协议的库,它为 Python 编程语言提供了高性能、易于使用的数据架构以及数据分析工具」。...在内部,Pandas 将数据框存储为不同类型的 numpy 数组(比如一个 float64 矩阵,一个 int32 矩阵)。 有两种可以大幅降低内存消耗的方法。...它可以通过两种简单的方法节省高达 90% 的内存使用: 了解数据框使用的类型; 了解数据框可以使用哪种类型来减少内存的使用(例如,price 这一列值在 0 到 59 之间,只带有一位小数,使用 float64...这个数是任意的,但是因为数据框中类型的转换意味着在 numpy 数组间移动数据,因此我们得到的必须比失去的多。 接下来看看数据中会发生什么。...nlargest 得到自杀率排前十的国家和年份 在这些例子中,输出都是一样的:有两个指标(国家和年份)的 MultiIndex 的 DataFrame,还有包含排序后的 10 个最大值的新列 suicides_sum

    1.8K11

    从小白到大师,这里有一份Pandas入门指南

    Pandas 是一个「开源的、有 BSD 开源协议的库,它为 Python 编程语言提供了高性能、易于使用的数据架构以及数据分析工具」。...在内部,Pandas 将数据框存储为不同类型的 numpy 数组(比如一个 float64 矩阵,一个 int32 矩阵)。 有两种可以大幅降低内存消耗的方法。...它可以通过两种简单的方法节省高达 90% 的内存使用: 了解数据框使用的类型; 了解数据框可以使用哪种类型来减少内存的使用(例如,price 这一列值在 0 到 59 之间,只带有一位小数,使用 float64...这个数是任意的,但是因为数据框中类型的转换意味着在 numpy 数组间移动数据,因此我们得到的必须比失去的多。 接下来看看数据中会发生什么。...nlargest 得到自杀率排前十的国家和年份 在这些例子中,输出都是一样的:有两个指标(国家和年份)的 MultiIndex 的 DataFrame,还有包含排序后的 10 个最大值的新列 suicides_sum

    1.7K30

    从小白到大师,这里有一份Pandas入门指南

    Pandas 是一个「开源的、有 BSD 开源协议的库,它为 Python 编程语言提供了高性能、易于使用的数据架构以及数据分析工具」。...在内部,Pandas 将数据框存储为不同类型的 numpy 数组(比如一个 float64 矩阵,一个 int32 矩阵)。 有两种可以大幅降低内存消耗的方法。...它可以通过两种简单的方法节省高达 90% 的内存使用: 了解数据框使用的类型; 了解数据框可以使用哪种类型来减少内存的使用(例如,price 这一列值在 0 到 59 之间,只带有一位小数,使用 float64...这个数是任意的,但是因为数据框中类型的转换意味着在 numpy 数组间移动数据,因此我们得到的必须比失去的多。 接下来看看数据中会发生什么。...nlargest 得到自杀率排前十的国家和年份 在这些例子中,输出都是一样的:有两个指标(国家和年份)的 MultiIndex 的 DataFrame,还有包含排序后的 10 个最大值的新列 suicides_sum

    1.7K30

    快速入门 Jupyter notebook

    数据分析例子 现在就开始文章开始说的数据分析例子,即从一份公司财富数据中分析公司的利润变化情况。...如果缺失的数据随着年份的变化符合正态分布,那么最简单的方法就是直接删除这部分数据集,代码如下所示 从结果看,缺失数据最多的一年也就是 25 条也不到,相比每年 500 条数据,最多占据 4%,并且只有在...90 年代的数据缺失会超过 20 条,其余年份基本在 10 条以下,因此可以接受直接删除缺失值的数据,代码如下: 删除数据后,profit 就是 float64 类型了。...采用 matplotlib 进行绘制图表 首先绘制随着年份变化的平均利润表,同时也会绘制收入随年份的变化情况,如下图所示: 结果看起来有点类似指数式增长,但出现两次巨大的下降情况,这其实和当时发生的事件有关系...其实还有很多问题可以深入探讨,但目前给出的例子已经足够入门 Jupyter notebook,这部分例子展示了如何分析探索数据,绘制数据的图表。

    50820

    快速入门 Jupyter notebook

    数据分析例子 现在就开始文章开始说的数据分析例子,即从一份公司财富数据中分析公司的利润变化情况。...如果缺失的数据随着年份的变化符合正态分布,那么最简单的方法就是直接删除这部分数据集,代码如下所示 从结果看,缺失数据最多的一年也就是 25 条也不到,相比每年 500 条数据,最多占据 4%,并且只有在...90 年代的数据缺失会超过 20 条,其余年份基本在 10 条以下,因此可以接受直接删除缺失值的数据,代码如下: 删除数据后,profit 就是 float64 类型了。...采用 matplotlib 进行绘制图表 首先绘制随着年份变化的平均利润表,同时也会绘制收入随年份的变化情况,如下图所示: 结果看起来有点类似指数式增长,但出现两次巨大的下降情况,这其实和当时发生的事件有关系...其实还有很多问题可以深入探讨,但目前给出的例子已经足够入门 Jupyter notebook,这部分例子展示了如何分析探索数据,绘制数据的图表。

    83430

    Altair适用于气象领域的Python数据可视化库,文末送书!

    用Python进行数据可视化你会用什么库来做呢? 今天就来和大家分享Python数据可视化库中的一员猛将——Altair!...Pandas 中的 DataFrame 是 Altair 使用的主要数据结构之一。Altair对Pandas的DataFrame有很好地加载效果,加载方法简单高效。...例如,使用Pandas读取Excel数据集,使用Altair加载Pandas返回值的实现代码,如下所示: import altair as alt import pandas as pd data...条形图可以更好地使用长度变化比较商品销售利润的差距,如下图所示。 对照柱形图的实现代码,条形图的实现代码变化的部分如下所示。...在实例方法encode()中,使用子区通道facet 设置分区,使用year 提取时间型变量date 的年份,作为拆分从2012 年到2015 年每个月的平均降雨量的分区标准,从而将每年的不同月份的平均降雨量分别显示在对应的子区上

    2.3K71

    Python数据可视化 被Altair圈粉了!

    用Python进行数据可视化你会用什么库来做呢? 今天就来和大家分享Python数据可视化库中的一员猛将——Altair!...Pandas 中的 DataFrame 是 Altair 使用的主要数据结构之一。Altair对Pandas的DataFrame有很好地加载效果,加载方法简单高效。...例如,使用Pandas读取Excel数据集,使用Altair加载Pandas返回值的实现代码,如下所示: import altair as alt import pandas as pd data =...条形图可以更好地使用长度变化比较商品销售利润的差距,如下图所示。 对照柱形图的实现代码,条形图的实现代码变化的部分如下所示。...在实例方法encode()中,使用子区通道facet 设置分区,使用year 提取时间型变量date 的年份,作为拆分从2012 年到2015 年每个月的平均降雨量的分区标准,从而将每年的不同月份的平均降雨量分别显示在对应的子区上

    1.8K20
    领券