首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

对于大小相同的两个数据帧df和logicaldf,命令df[logicaldf,]在R中执行什么?

在R中,命令df[logicaldf, ]用于根据逻辑向量logicaldf从数据框df中选择行。logicaldf是一个逻辑向量,长度应与df的行数相同。当logicaldf中的元素为TRUE时,对应df中的行将被选择,否则将被排除。

具体而言,命令df[logicaldf, ]将返回一个新的数据框,其中只包含df中logicaldf为TRUE的行。新的数据框将保留与df相同的列,并按照原始顺序排列。

对于这个问题中的R命令,由于没有具体的数据框和逻辑向量提供,无法给出更为详细和具体的答案。关于R的数据框操作和索引语法,请参考以下链接:

  • 数据框操作:https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/data.frame
  • R中的逻辑运算符:https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/logical
  • R中的索引和子集操作:https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/Subset
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

一文入门Python的Datatable操作

前言 data.table 是 R 中一个非常通用和高性能的包,使用简单、方便而且速度快,在 R 语言社区非常受欢迎,每个月的下载量超过 40 万,有近 650 个 CRAN 和 Bioconductor...对象中,datatable 的基本分析单位是 Frame,这与Pandas DataFrame 或 SQL table 的概念是相同的:即数据以行和列的二维数组排列展示。...帧转换 (Frame Conversion) 对于当前存在的帧,可以将其转换为一个 Numpy 或 Pandas dataframe 的形式,如下所示: numpy_df = datatable_df.to_numpy...诸如矩阵索引,C/C++,R,Pandas,Numpy 中都使用相同的 DT[i,j] 的数学表示法。下面来看看如何使用 datatable 来进行一些常见的数据处理工作。 ?...▌帧排序 datatable 排序 在 datatable 中通过特定的列来对帧进行排序操作,如下所示: %%timedatatable_df.sort('funded_amnt_inv')_____

7.7K50

Python的Datatable包怎么用?

前言 data.table 是 R 中一个非常通用和高性能的包,使用简单、方便而且速度快,在 R 语言社区非常受欢迎,每个月的下载量超过 40 万,有近 650 个 CRAN 和 Bioconductor...Frame 对象中,datatable 的基本分析单位是 Frame,这与Pandas DataFrame 或 SQL table 的概念是相同的:即数据以行和列的二维数组排列展示。...帧转换 (Frame Conversion) 对于当前存在的帧,可以将其转换为一个 Numpy 或 Pandas dataframe 的形式,如下所示: numpy_df = datatable_df.to_numpy...诸如矩阵索引,C/C++,R,Pandas,Numpy 中都使用相同的 DT[i,j] 的数学表示法。下面来看看如何使用 datatable 来进行一些常见的数据处理工作。 ?...▌帧排序 datatable 排序 在 datatable 中通过特定的列来对帧进行排序操作,如下所示: %%time datatable_df.sort('funded_amnt_inv') ___

7.2K10
  • Python的Datatable包怎么用?

    前言 data.table 是 R 中一个非常通用和高性能的包,使用简单、方便而且速度快,在 R 语言社区非常受欢迎,每个月的下载量超过 40 万,有近 650 个 CRAN 和 Bioconductor...对象中,datatable 的基本分析单位是 Frame,这与Pandas DataFrame 或 SQL table 的概念是相同的:即数据以行和列的二维数组排列展示。...帧转换 (Frame Conversion) 对于当前存在的帧,可以将其转换为一个 Numpy 或 Pandas dataframe 的形式,如下所示: numpy_df = datatable_df.to_numpy...诸如矩阵索引,C/C++,R,Pandas,Numpy 中都使用相同的 DT[i,j] 的数学表示法。下面来看看如何使用 datatable 来进行一些常见的数据处理工作。 ?...▌帧排序 datatable 排序 在 datatable 中通过特定的列来对帧进行排序操作,如下所示: %%timedatatable_df.sort('funded_amnt_inv')_____

    6.7K30

    R语言新神器visdat包(一行代码看穿整个数据集)

    vis_compare()可视化相同维度的两个数据帧之间的差异 vis_expect()可视化数据中满足某些条件成立的数据 vis_cor()在一个漂亮的热图中可视化变量的相关性 vis_guess...上图告诉我们:R将此数据集读取为数值型或者整数型,并在Ozone和Solar.R中存在一些缺失的数据。缺少的数据由灰色表示。...如果数据不含有任何缺失数据: vis_miss(mtcars) ? (3) vis_compare()对比数据框差异 vis_compare()可以显示两个相同大小的数据帧的差异。...如果尝试在列不同时比较两个数据框的差异,则会出现一个错误: chickwts_diff_2 <- chickwts chickwts_diff_2$new_col <- chickwts_diff_2$...(6)vis_guess()函数 用来猜测数据框中每个单元格是什么类型的数据。

    1.4K40

    用Prophet在Python中进行时间序列预测

    然后,在R 中,我们可以使用以下语句将查询结果集传递到数据帧df中: df = datasets["Daily Orders"] 为了快速了解您的数据框包含多少个观测值,可以运行以下语句: df.shape...df.dtypes 确认数据框中的列是正确的数据类型,就可以ds在数据框中创建一个新列,是该列的完全相同的副本: df['ds'] = df['date'] df['y'] = df['value'...现在,我们可以使用predict方法对未来数据帧中的每一行进行预测。 此时,Prophet将创建一个分配给变量的新数据框,其中包含该列下未来日期的预测值yhat以及置信区间和预测部分。...该inv_boxcox方法有两个必需的输入。要转换的数据数组和转换的λ值。...我们将对预测数据帧中的特定列进行逆变换,并提供先前从存储在lam变量中的第一个Box-Cox变换中获得的λ值: 现在,您已将预测值转换回其原始单位,现在可以将预测值与历史值一起可视化: ?

    1.7K10

    使用交互组件(ipywidgets)“盘活”Jupyter Notebook(上)

    如果使用conda,我们在终端输入这个命令: 1conda install -c conda-forge ipywidgets 对于pip,这将是一个两步的过程:1、安装和2、启用: 1pip install...df_london.样本 假设我们想按年过滤数据帧。我们首先定义一个下拉列表,并用唯一的年份值列表填充它。...使用下拉列表筛选数据帧 到目前为止还不错,但是所有查询的输出都在这个非常相同的单元格中累积;也就是说,如果我们从下拉列表中选择一个新的年份,新的数据框将呈现在第一个单元格的下面,在同一个单元格上。...不过,理想的行为是每次刷新数据帧的内容。 捕获小部件输出 解决方法是在一种特殊的小部件(即输出)中捕获单元输出,然后将其显示在另一个单元中。...我们将稍微调整代码以: 创建输出的新实例 1output_year = widgets.Output() 调用事件处理程序中的clear_output方法,在每次迭代中清除先前的选择,并在with块中捕获数据帧的输出

    13.8K61

    Python 数据科学入门教程:Pandas

    我倾向于将数据库数据直接倒入 Pandas 数据帧中,执行我想要执行的操作,然后将数据显示在图表中,或者以某种方式提供数据。 最后,如果我们想重新命名其中一列,该怎么办?...五、连接(concat)和附加数据帧 欢迎阅读 Python 和 Pandas 数据分析系列教程第五部分。在本教程中,我们将介绍如何以各种方式组合数据帧。...每个数据帧都有日期和值列。这个日期列在所有数据帧中重复出现,但实际上它们应该全部共用一个,实际上几乎减半了我们的总列数。 在组合数据帧时,你可能会考虑相当多的目标。...当我们附加索引相同的数据时会发生什么?...有人问为什么连接(concat )和附加都退出了。 这就是原因。 因为共有列包含相同的数据和相同的索引,所以组合这些数据帧要高效得多。 一个另外的例子是附加一个序列。

    9.1K10

    如果 .apply() 太慢怎么办?

    如果你在Python中处理数据,Pandas必然是你最常使用的库之一,因为它具有方便和强大的数据处理功能。...如果我们想要将相同的函数应用于Pandas数据帧中整个列的值,我们可以简单地使用 .apply()。Pandas数据帧和Pandas系列(数据帧中的一列)都可以与 .apply() 一起使用。...例如,我们想要创建一列列表来记录“radius_or_3”和“diameter”之间可能的大小。...我告诉你,对于一个数百万行的数据框,需要 20 多分钟。 我们是否能够找到更高效的方法来执行这项任务呢? 答案是肯定的。...这比对整个数据帧使用的 .apply() 函数快26倍!! 总结 如果你尝试对Pandas数据帧中的单个列使用 .apply(),请尝试找到更简单的执行方式,例如 df['radius']*2。

    29710

    PySpark UD(A)F 的高效使用

    这两个主题都超出了本文的范围,但如果考虑将PySpark作为更大数据集的panda和scikit-learn的替代方案,那么应该考虑到这两个主题。...由于主要是在PySpark中处理DataFrames,所以可以在RDD属性的帮助下访问底层RDD,并使用toDF()将其转换回来。这个RDD API允许指定在数据上执行的任意Python函数。...如果工作流从 Hive 加载 DataFrame 并将生成的 DataFrame 保存为 Hive 表,在整个查询执行过程中,所有数据操作都在 Java Spark 工作线程中以分布式方式执行,这使得...[k1ruio56d2.png] 因为数据来回复制过多,在分布式 Java 系统中执行 Python 函数在执行时间方面非常昂贵。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)

    19.7K31

    独家 | 别在Python中用Matplotlib和Seaborn作图了,亲,试试这个

    对于需要处理数据的人来说,能够创建漂亮、直观的可视化绘图是一项非常重要的技能,这能够有效地传达数据洞察并推动后续执行。...R语言提供了一些很棒的数据可视化(ggplot2、leaflet)和仪表板(R Shiny)包,用这些可以创建漂亮的可视化绘图。...在下面的代码中,我们创建了这两个国家的预期寿命和人均 GDP 之间的散点图。...animation_frame:用于标记动画帧的dataframe列的值。在我们的示例中,参数设置为年份列。...animation_group:匹配“animation_group”的行将被作为在每一帧中描述相同的对象。我们想看看每个国家多年来的进展情况,因此将其设置为国家列。

    1.8K20

    使用Python在Neo4j中创建图数据库

    然后,我们希望有三种不同的节点类型与之对应:作者、论文和类别。 每个节点类型都有一两个属性。对于作家来说,有作者的名字。论文可以有ID和标题。最后,类别有自己的名称。...UNWIND命令获取列表中的每个实体并将其添加到数据库中。在此之后,我们使用一个辅助函数以批处理模式更新数据库,当你处理超过50k的上传时,它会很有帮助。...请注意,在这个函数中有更多的数据在管道中移动,因此它可能有助于减少批处理大小,以防止超时错误。...同样,在这个步骤中,我们可能会在完整的数据帧上使用类似于explosion的方法,为每个列表的每个元素获取一行,并以这种方式将整个数据帧载入到数据库中。...因为Neo4j是一个事务性数据库,我们创建一个数据库,数据帧的每一行就执行一条语句,这会非常缓慢。它也可能超出可用内存。沙箱实例有大约500 MB的堆内存和500 MB的页面缓存。

    5.5K30

    人群接触网络中的 SIR 疫情模拟

    视频内容 如何用网络来表示人之间的接触关系?在接触网络中,如何通过 SIR 模型模拟疫情的发展趋势? 本案例将介绍SIR模型,图和网络的基本知识。...与传统 SIR 模型类似,有两个重要的参数:感染率 β 和恢复率 γ。我们需要给每个节点引入一个状态,取值为 S,I,R 中的一种。每一个时间步中,需要动态对每一个节点的状态进行更新。...x in df.columns]) 我们再次画出在相同的 β 和 γ 参数,相同的 S0,I0,R0 下,传统 SIR 模型的结果。...如果两个人之间有超过20秒以上的面对面接触,则它们之间存在一条边。原始数据集中两个节点之间可能存在多条边,为了简化分析我们只保留其中的一条边。数据集来源于网站KNOECT。...in df.columns])   观察上述两个图中疫情高峰到来的时间,可以看到网络中重要的节点可以更快地传播疾病。

    8.9K43

    汇编和栈

    一旦栈达到内核给定的有限大小,或者如果栈越过了堆的边界,则称栈溢出。这是一个致命错误,通常称为栈溢出。 # 栈指针和基本指针寄存器 您尚未了解的两个非常重要的寄存器是 RSP 和 RBP。...堆栈指针将更新为指向 Frame 4,该 feame 可能负责指令指针中此新调用函数中的暂存空间和数据。 函数的具体执行在第 4 帧中完成,执行完之后指针从第四帧弹出,并继续指向第三帧....您可以通过选择不同的帧并在 LLDB 控制台中键入 cpx rbp 或 cpx rsp 在 LLDB 中对此进行验证。 那么,为什么这两个寄存器很重要?...而先前的值应为 RSP 加上最近推送的值的大小 ----- 对于 64 位体系结构,通常为 8 个字节。...RBP 的值被压入堆栈。 这意味着以下两个命令将产生相同的输出。 执行两个都进行验证。 (lldb) x/gx $rsp 这将查看栈指针寄存器所指向的内存地址。

    3.7K20

    R语言函数的含义与用法,实现过程解读

    在R的安装程序中只包含了8个基础模块,其他外在模块可以通过CRAN获得。 R的特点 (1) 有效的数据处理和保存机制。 (2) 拥有一整套数组和矩阵的操作运算符。...命令文件的执行和输出转向到文件 如果命令存储于一个外部文件中,比如工作目录work中的commands.R,他们可以随时在R的任务中被执行 > source("commands.R")在Windows中...逻辑值和因子在数据帧中保持不变,字符向量将被强制转化为因子,其水平是字符向量中所出现的值; 4 数据帧中作为变量的向量结构必须具有相同的长度,而矩阵结构应当具有相同的行大小。...数据帧使用惯例 1 将每个独立的,适当定义的问题所包含的所有变量收入同一个数据帧中,并赋予合适的、易理解、易辨识的名称; 2 处理问题时,当相应的数据帧挂接于位置2,同时在第1层工作目录下存放操作的数值和临时变量...你甚至可以在后两个数中使用和真值(true value)不同的值,在同一页上得到大小不同的图。

    5.7K30

    R语言函数的含义与用法,实现过程解读

    在R的安装程序中只包含了8个基础模块,其他外在模块可以通过CRAN获得。 R的特点 (1) 有效的数据处理和保存机制。 (2) 拥有一整套数组和矩阵的操作运算符。...命令文件的执行和输出转向到文件 如果命令存储于一个外部文件中,比如工作目录work中的commands.R,他们可以随时在R的任务中被执行 > source("commands.R")在Windows中...逻辑值和因子在数据帧中保持不变,字符向量将被强制转化为因子,其水平是字符向量中所出现的值; 4 数据帧中作为变量的向量结构必须具有相同的长度,而矩阵结构应当具有相同的行大小。...数据帧使用惯例 1 将每个独立的,适当定义的问题所包含的所有变量收入同一个数据帧中,并赋予合适的、易理解、易辨识的名称; 2 处理问题时,当相应的数据帧挂接于位置2,同时在第1层工作目录下存放操作的数值和临时变量...你甚至可以在后两个数中使用和真值(true value)不同的值,在同一页上得到大小不同的图。

    4.7K120

    刷爆全网的动态条形图,原来5行Python代码就能实现!

    下载压缩包,将解压后的文件夹放置在项目的venv/lib/python3.7/site-packages目录下。 在虚拟环境下打开文件夹,命令行运行如下命令完成安装。...3行代码Python代码就实现了,对大佬封装好的库表示膜拜~ 这里因为作者封装好了数据处理模块,只需要3行代码即可。 对于我们而言,是需要加载自己的数据,自己进行处理,所以多了那么2行。...示例里的数据直接使用作者提供的,在data文件夹下的covid19_tutorial.csv文件(GitHub上有)。 ? 经过其封装好的数据处理函数,得到最终的数据。 ?...这里有一些要注意的地方,比如中文配置,以及自定义颜色配置。 中文配置只需在第三方库的「_make_chart.py」文件中,加入如下三行代码。...使用电视剧余欢水人物的「百度指数」数据。 文件具体内容如下。 ? 经过数据透视表处理后,得到与该库格式相同的数据。 ? 想用自己的数据来做动态条形图,5行代码即可搞定。

    2.1K31

    Github项目推荐 | visdat - 数据初步探索性可视化工具

    vis_compare()将相同维度的两个数据帧之间的差异可视化 vis_expect()将数据中某些条件成立的位置可视化 vis_cor()在一个漂亮的热图中对变量的相关性可视化 vis_guess(...)将数据中各个类的earch值可视化 你可以在“using visdat”小节中查看更多关于visdat的信息。...示例 使用 vis_dat() 让我们看看基地R的airquality(空气质量)数据集中的内容,其中包含有关1973年5月至9月纽约每日空气质量测量的信息。有关数据集的更多信息可以在 ?...上面的图告诉我们,R读取这个数据集时是数值和整数值,并在Ozone和Solar.R中显示一些缺失的数据。类在图例中表示,缺失的数据用灰色表示,列/变量名列在x轴上。...使用vis_compare() 有时你想要查看数据中发生了哪些变化。 vis_compare()可以显示两个相同大小的数据帧的差异。

    84930

    在gpu上运行Pandas和sklearn

    在本文中我们将 Rapids优化的 GPU 之上的DF、与普通Pandas 的性能进行比较。 我们将在 Google Colab 中对其进行测试。...NV的显卡是唯一支持CUDA的显卡,Rapids只支持谷歌Colab中基于P4、P100、T4或V100的gpu,在分配到GPU后我们执行以下命令确认: !...我们看看创建时的时间对比: 现在让我们看看GPU是否通过对这些数据帧执行一些操作来提高性能!...对数运算 为了得到最好的平均值,我们将对两个df中的一列应用np.log函数,然后运行10个循环: GPU的结果是32.8毫秒,而CPU(常规的pandas)则是2.55秒!...函数和train_test_split都与与sklearn的同名函数函数相同使用.to_pandas()函数可以将gpu的数据转换为普通的pandas df。

    1.6K20

    如何成为Python的数据操作库Pandas的专家?

    下面我们给大家介绍Pandas在Python中的定位。 ? 01 了解Pandas 要很好地理解pandas,关键之一是要理解pandas是一系列其他python库的包装器。...而Matplotlib和Seaborn则用于提供一个简单的接口,使用诸如df.plot()这样的命令来绘制data frame中可用的信息。...03 通过DTYPES高效地存储数据 当通过read_csv、read_excel或其他数据帧读取函数将数据帧加载到内存中时,pandas会进行类型推断,这可能是低效的。...04 处理带有块的大型数据集 pandas允许按块(chunk)加载数据帧中的数据。因此,可以将数据帧作为迭代器处理,并且能够处理大于可用内存的数据帧。 ?...在读取数据源时定义块大小和get_chunk方法的组合允许panda以迭代器的方式处理数据,如上面的示例所示,其中数据帧一次读取两行。

    3.1K31
    领券