首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

我可以使用POST和GET,但为什么不能在MongoDB地图集中使用DELETE

在MongoDB地图集中,不能使用DELETE方法是因为MongoDB地图集是基于HTTP协议的RESTful API,而HTTP协议中规定了对资源的操作方法,其中包括GET、POST、PUT和DELETE。其中,GET用于获取资源,POST用于创建资源,PUT用于更新资源,而DELETE用于删除资源。

在MongoDB地图集中,使用POST和GET方法可以完成对资源的创建和获取操作,但是不支持DELETE方法。这是因为MongoDB地图集的设计初衷是为了提供方便的数据访问和查询功能,而不是用于直接删除数据。如果需要删除数据,可以通过其他方式,例如使用MongoDB的官方驱动程序或命令行工具来执行删除操作。

总结起来,MongoDB地图集不支持DELETE方法是因为其设计目标和用途的限制,它更适用于数据的读取和查询操作,而不是直接删除数据。如果需要删除数据,可以通过其他途径来实现。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

中国成人脑白质分区与脑功能图谱

脑地图集在研究大脑解剖和功能方面起着重要的作用。随着对多模态磁共振成像(MRI)方法(如结合结构MRI、弥散加权成像(DWI)和静息态功能MRI (rs-fMRI))的兴趣的增加,有必要基于这三种成像方式构建集成的脑地图集。本研究构建了中国成年人群(年龄22-79岁,n = 180)的多模态脑图谱,包括反映脑形态学的T1图谱、描绘复杂纤维结构的高角度分辨率弥散成像(HARDI)图谱和反映单一立体定向坐标下大脑固有功能组织的rs-fMRI图谱。我们采用大变形自形度量映射(LDDMM)和无偏自形图谱生成方法同时生成T1和HARDI图谱。利用谱聚类,我们从rs-fMRI数据中生成了20个脑功能网络。我们通过联合独立成分分析,展示了使用图谱来探索大脑形态、功能网络和白质束之间的一致性标记。

02

【Science】无监督式机器翻译,不需要人类干预和平行文本

编译:弗格森 【新智元导读】 两篇新的论文表明,神经网络可以在不需要平行文本的情况下学习翻译,这是一个令人惊讶的进步,它将可以让人们可以读懂更多语言的文档。 因为神经网络,即一种以人脑为启发的计算机算法,自动的语言翻译取得了长足的进步。但是训练这样的网络需要大量的数据:通过数以百万计逐句对应的翻译来展示人类是如何做到这一点的。现在,两篇新的论文表明,神经网络可以在不需要平行文本的情况下学习翻译,这是一个令人惊讶的进步,它将可以让人们可以读懂更多语言的文档。 “想象一下,你给一个人很多中文书籍和大量的阿拉伯语

09

Google Earth Engine——全球摩擦面列举了北纬85度和南纬60度之间的所有陆地像素在2015年的名义年的陆地迁移速度。

This global friction surface enumerates land-based travel speed for all land pixels between 85 degrees north and 60 degrees south for a nominal year 2015. This map was produced through a collaboration between the University of Oxford Malaria Atlas Project (MAP), Google, the European Union Joint Research Centre (JRC), and the University of Twente, Netherlands. The underlying datasets used to produce the map include roads (comprising the first ever global-scale use of Open Street Map and Google roads datasets), railways, rivers, lakes, oceans, topographic conditions (slope and elevation), landcover types, and national borders. These datasets were each allocated a speed or speeds of travel in terms of time to cross each pixel of that type. The datasets were then combined to produce this “friction surface”, a map where every pixel is allocated a nominal overall speed of travel based on the types occurring within that pixel, with the fastest travel mode intersecting the pixel being used to determine the speed of travel in that pixel (with some exceptions such as national boundaries, which have the effect of imposing a travel time penalty). This map represents the travel speed from this allocation process, expressed in units of minutes required to travel one meter. It forms the underlying dataset behind the global accessibility map described in the referenced paper.

01

Trends in Neurosciences重磅综述:多尺度大脑建模的探索

解决大脑的多尺度组织,这是器官动态库的基础,仍然具有挑战性。原则上,应该可以对神经元和突触进行详细建模,然后将它们连接成大型神经元组件,以解释微观现象、大规模大脑功能和行为之间的关系。从集成测量(例如目前通过大脑活动记录获得的测量)推断神经元功能更加困难。在这篇文章中,研究者考虑了从神经元生物物理学原理产生的自下而上模型与基于网络活动的集成表示和功能原理的自上而下模型相结合的理论和策略。这些综合方法有望在虚拟大脑和神经机器人中提供有效的多尺度模拟,并为未来在医学和信息技术中的应用铺平道路。

02

Google Earth Engine——北纬85度和南纬60度之间所有地区到最近的人口密集区的迁移时间数据集

This global accessibility map enumerates land-based travel time to the nearest densely-populated area for all areas between 85 degrees north and 60 degrees south for a nominal year 2015. Densely-populated areas are defined as contiguous areas with 1,500 or more inhabitants per square kilometer or a majority of built-up land cover types coincident with a population centre of at least 50,000 inhabitants. This map was produced through a collaboration between the University of Oxford Malaria Atlas Project (MAP), Google, the European Union Joint Research Centre (JRC), and the University of Twente, Netherlands. The underlying datasets used to produce the map include roads (comprising the first ever global-scale use of Open Street Map and Google roads datasets), railways, rivers, lakes, oceans, topographic conditions (slope and elevation), landcover types, and national borders. These datasets were each allocated a speed or speeds of travel in terms of time to cross each pixel of that type. The datasets were then combined to produce a “friction surface”, a map where every pixel is allocated a nominal overall speed of travel based on the types occurring within that pixel. Least-cost-path algorithms (running in Google Earth Engine and, for high-latitude areas, in R) were used in conjunction with this friction surface to calculate the time of travel from all locations to the nearest city (by travel time). Cities were determined using the high-density-cover product created by the Global Human Settlement Project. Each pixel in the resultant accessibility map thus represents the modeled shortest time from that location to a city.

01

NC:生理高频振荡和慢波之间的相-幅耦合的发育图谱

摘要:我们研究了高频振荡(HFO)和调制指数(MI)(HFO与慢波相位之间的耦合测量)的发展变化。我们利用114名患者(年龄1.0-41.5岁)的8251个非癫痫电极部位的硬膜下脑电图信号生成了标准脑图谱,这些患者在癫痫切除手术后实现了癫痫发作控制。我们观察到所有年龄段的枕叶MI均较高,并且枕叶MI在儿童早期显着增加。表现出MI共同生长的皮质区域通过垂直枕叶束和后胼胝体纤维连接。虽然枕叶HFO没有显示出显着的年龄相关性,但颞叶、额叶和顶叶的HFO却表现出与年龄相反。对1006个癫痫发作部位的评估显示,癫痫发作时的z评分归一化MI和HFO高于非癫痫电极部位。

01
领券